
Rethinking How We Manage Failures
Devesh Tiwari

Goodwill Computing Lab
https://web.northeastern.edu/tiwari

With sincere thanks to students and collaborators at Oak Ridge National Lab,
Lawrence Berkeley National Lab, Argonne National Lab, Northeastern University,

College of William & Mary and Wayne State University
... and sponsors

There are two worlds in this world!

Enterprise Computing
Data Centers

High Performance Computing
Data Centers

There are two worlds in this world!

High Performance Computing
Data Centers

Enterprise Computing
Data Centers

Large-scale Computational Science Applications

CLOUD COMPUTING
§ Resource Flexibility

• Users can elastically scale their resources on-demand

§ Cost Efficiency
• Sharing resources between multiple users and applications

Batch applicationsLatency-critical
Interactive apps

QoS: tail latency QoS: throughput

CLOUD COMPUTING
§ Resource Flexibility

• Users can elastically scale their resources on-demand

§ Cost Efficiency
• Sharing resources between multiple users and applications

Batch applicationsLatency-critical
Interactive apps

QoS: tail latency QoS: throughput

Latency-sensitive applications plus batch jobs

There are two worlds in this world!

Long running “tightly-coupled”
applications, explicit focus on resilience
mechanisms (e.g., checkpoint-restart),

improvements in system throughput and
utilization desired.

Large-scale Computational Science Applications

Short running jobs (in the order of
milliseconds to seconds), restart-on-

failure, focus on achieving tighter
SLAs and reducing tail latency

CLOUD COMPUTING
§ Resource Flexibility

• Users can elastically scale their resources on-demand

§ Cost Efficiency
• Sharing resources between multiple users and applications

Batch applicationsLatency-critical
Interactive apps

QoS: tail latency QoS: throughput

CLOUD COMPUTING
§ Resource Flexibility

• Users can elastically scale their resources on-demand

§ Cost Efficiency
• Sharing resources between multiple users and applications

Batch applicationsLatency-critical
Interactive apps

QoS: tail latency QoS: throughput

Latency-sensitive applications plus batch jobs

Large-scale scientific applications will face
severe resilience challenge at exascale!

You can’t avoid them, you can’t predict them,
but you can choose who gets hit by them!

Rethinking How We Manage
Failures

Key is to exploit statistical properties of failures and
diversity in characteristics of jobs

Who gets hit by failures: Part I

Who gets hit by failures in time!

Garg et al., “Shiraz: Exploiting System Reliability and Application
Resilience Characteristics to Improve Large Scale System

Throughput”, DSN 2018.

What new territory does this work explore?

Building more reliable system components
Failure prediction, Quarantine job scheduling

Prior efforts increase effective system MTBF

Shiraz improves both system throughput and individual
application performance by exploiting (a) differences in
application resilience characteristics, and (b) dynamic

system reliability behavior

Prior efforts reduce checkpointing overhead
Incremental checkpointing of system state
Checkpoint compression, Lazy checkpointing

Observation 1: Large variations
exist in checkpointing overheads

App. Domain Checkpoint time
Climate 2 seconds

Molecular
Simulations 6 seconds

Combo-crunch 50 seconds
Laser Plasma 30 minutes

Plasma Science 45 minutes

Checkpointing overhead varies with application type, simulation
parameters, memory-resident data size, input size, etc.

Observation 1: Large variations
exist in checkpointing overheads

Light Applications (LW): low checkpointing overhead
lower optimal checkpointing interval:
Heavy Applications (HW): high checkpointing
overhead; higher optimal checkpointing interval:

Table 1: Differences in checkpointing cost among large-
scale HPC applications.

Machine Application Domain Checkpointing
Duration (sec.)

Titan (OLCF) Climate Change Simulation 1.5
with the Community Earth
System Model

Hopper (NERSC) 20th Century Reanalysis 2
Franklin (NERSC)
Jaguar (ORNL) Molecular Simulation 6
Hopper (NERSC) in Energy Biosciences
Carver and Computational Predictions 50
Euclid (NERSC) of Trans. Factor Binding Sites
Cori (NERSC) Chombo-crunch 70
Hopper (NERSC) Climate Science for a 150

Sustainable Energy Future
Hopper (NERSC) Laser Plasma Interactions 1800
Hopper (NERSC) Plasma Based Accelerators 2000
Hopper (NERSC) Plasma Science Studies 2700

Figure 3: Normalized cost of checkpointing for CoMD,
SNAP and miniFE applications for different configurations
(experimentally measured using system-level checkpoint-
ing [7], normalized to CoMD config-1).

large-scale HPC centers [5, 6]. The checkpoint durations of
the applications in the table range from a few seconds to
more than half an hour. Other researches have also noted a
difference of orders of magnitude in the checkpointing traf-
fic among large-scale HPC applications [23].

To further confirm the existence of this trend, we con-
ducted a real-system experiment where we experimentally
measured the cost of checkpointing for three representa-
tive applications: CoMD, SNAP, and miniFE [22, 26] using
DMTCP system-level checkpointing [7], under three differ-
ent configurations (Figure 3).

We observed that (1) different applications have widely
varying checkpointing overheads (up to a difference of more
than 40x), and (2) even the same application can exhibit dif-
ferent checkpointing overheads, depending on the input pa-
rameters. These variations in checkpointing overheads open
up opportunities for new optimizations in the presence of
multiple applications performing checkpointing on large-
scale systems that experience system failures.

Next, we will show how Shiraz exploits observations
about temporal recurrence of failures and checkpointing
overhead to improve overall system throughput.

Failure

App 1 Useful Work
App 1 Checkpoint
App 1 Lost Work

App 2 Useful Work
App 2 Checkpoint
App 2 Lost Work

Failure Failure

Figure 4: Conventional scheduling (Baseline): Switch be-
tween applications after every failure.

Failure

App 1 Useful Work
App 1 Checkpoint
App 1 Lost Work

App 2 Useful Work
App 2 Checkpoint
App 2 Lost Work

Failure

Figure 5: Heavy-weight application is likely to have higher
average lost work per failure.

3. Shiraz: Design and Model
In a multi-application environment, a fair scheduler switches
the applications at every failure, as shown in Fig. 4. By
switching at every failure, the scheduler provides each appli-
cation an equal chance to do useful work. This traditional ap-
proach does not exploit the two key factors discussed in Sec-
tion 2: temporal recurrence characteristics of failures, and
variation in checkpointing cost among applications.

First, we point out that the average lost work due to a
failure is different for different types of applications. Fig. 5
shows that an application with higher checkpointing over-
head (referred as heavy-weight application) is likely to have
higher average lost work compared to an application with
relatively lower checkpointing overhead (referred as light-
weight application). This is because the optimal checkpoint-
ing interval (OCI) for the heavy-weight application is larger
than the OCI of light-weight application, according to Daly’s
formula:

√
2Mδ− δ, where M is the system MTBF and δ is

the checkpoint overhead of the application. Thus, larger OCI
leads to higher average lost work due to a failure (Fig. 5).

Implication: It is beneficial to schedule the heavy-weight
application when the system MTBF is higher. Unfortunately,
it is hard to find consistent higher MTBF periods during the
operational time of a system and a suboptimal choice may
result in performance degradation for the heavy-weight ap-
plication (as discussed in Section 2). To address this chal-
lenge, we leverage the non-constant failure rate between two
failures. The hazard rate decreases between two failures and
hence, statistically, the probability of a failure is higher right
after a failure and it decreases over time. This observation
can be exploited by scheduling the light-weight application
before scheduling the heavy-weight application.

Shiraz Key Idea: The key idea is to intelligently sched-
ule applications with different checkpointing overheads be-
tween two failures. Shiraz schedules a heavy-weight appli-
cation during periods with relatively lower system failure
rate, while a light-weight application is scheduled during

85

Failure Failure

Time Between Two Failures

Fa
ilu

re
 R

at
e

Switch Point

App 1 Useful Work
App 1 Checkpoint
App 1 Lost Work

App 2 Useful Work
App 2 Checkpoint
App 2 Lost Work

Figure 6: Shiraz switches two applications in between two
failures to reduce the overall lost work per failure by
scheduling the heavy-weight application during periods with
relatively lower system failure rate.

periods with relatively higher system failure rate (as demon-
strated in Fig. 6). Scheduling an application with high check-
pointing overhead (i.e., larger OCI) during the later part of
the failure rate curve is likely to result in lower overall lost
work. Similarly, scheduling a light-weight application (i.e.,
smaller OCI) during the earlier part of the failure rate curve
decreases the amount of lost work per failure. Therefore, it
increases the useful work done per failure occurrence. How-
ever, this creates new challenges.

As Fig. 7 shows, while switching late, in order to avoid
failures, may potentially save large amount of average lost
work per failure for the heavy-weight application, it can also
degrade the performance for the heavy-weight application.
This is because the application cannot produce the same
amount of useful work as in the baseline, where each ap-
plication gets a fair share of the runtime. On the other hand,
switching too soon (1) exposes the heavy-weight application
to a higher failure rate, and (2) degrades the performance of
the light-weight application. Therefore, Shiraz encapsulates
an analytical model that determines the optimal switching
point to dynamically adapt to the failure rate.

The formulation and details of this model are presented
below. We refer to the light-weight application as LW and
the heavy-weight application as HW . Using Daly’s formula,
the OCI’s for the two applications can be expressed as:

OCILW =
√
2MδLW − δ and OCIHW =

√
2MδHW − δ

(1)
Where system MTBF, checkpoint overhead for light weight
application and heavy weight application are denoted by M ,
δLW , and δHW , respectively.

First, we need to estimate the baseline performance for
the two given applications. Recall, that in the conventional
scheme, the applications are switched at every failure. Let
us suppose that both the applications are executed for a total
of Ttotal time. We note that switching at a failure boundary is
equivalent to switching after an infinite amount of time since
the last failure. This helps in developing a unified framework
for modeling both baseline and Shiraz.

Estimating different components of the execution (useful
work, checkpoint overhead, and lost work) requires knowing

Failure FailureSwitch PointShiraz

Shiraz+

Switch Point

App 1 Useful Work
App 1 Checkpoint
App 1 Lost Work

App 2 Useful Work
App 2 Checkpoint
App 2 Lost Work

Figure 7: Effect of different switch points between failures.

the number of failures. The number of failures between two
time instances (tstart and tend) can be estimated as follows:

Failnum
(tstart,tend) =

Ttotal

M
× (e−(tstart

λ)β − e−(
tend
λ)β) (2)

Where λ and β are the scale and shape parameter for
Weibull distribution, respectively (Section 2). We note that
the scale parameter can be derived from the MTBF: λ =

M
Γ(1+ 1

β)
. Eq. 2 can be used to derive the total number of

failures in time Ttotal as follows.

Failnum
total =

Ttotal

M
× (1− e−(

Ttotal
λ)β) (3)

In the baseline case, where the application gets switched
at every failure, each of the two applications essentially gets
to run for Ttotal

2 time (in the baseline case Ttotal =
Ttotal
2). Thus,

the total lost work in the baseline case for both applications
can be estimated as:

T LW
lost-base = ϵ× (OCILW + δLW)× Failnum

total (4)
THW

lost-base = ϵ× (OCIHW + δHW)× Failnum
total (5)

Where ϵ is the average fraction of lost work per failure.
For estimating useful work and checkpointing overhead, we
can divide the time segment between two failures in chunks
of optimal checkpointing interval plus checkpointing over-
head (OCI+δ). For probabilistic modeling, one can imagine
that there are infinite such segments and calculate the prob-
ability of failure after each segment. Note that the average
number of such segments is M

(OCI+δ) . As discussed previ-
ously, the number of failures between time segments i and
i+ 1 is given by Failnum

(i×(OCILW+δLW),(i+1)×(OCILW+δLW)). As a
short hand notation, we denote this as Failnum

i,i+1(OCILW +
δLW). Successful completion of a segment results in use-
ful work equivalent to the optimal checkpointing interval.
Therefore, the useful work for the two applications in the
baseline case can be mathematically expressed as:

T LW
useful-base =

∞∑

i=1

i× OCILW × Failnum
i,i+1(OCILW + δLW) (6)

THW
useful-base =

∞∑

i=1

i× OCIHW × Failnum
i,i+1(OCIHW + δHW) (7)

86

Failure Failure

Time Between Two Failures

Fa
ilu

re
 R

at
e

Switch Point

App 1 Useful Work
App 1 Checkpoint
App 1 Lost Work

App 2 Useful Work
App 2 Checkpoint
App 2 Lost Work

Figure 6: Shiraz switches two applications in between two
failures to reduce the overall lost work per failure by
scheduling the heavy-weight application during periods with
relatively lower system failure rate.

periods with relatively higher system failure rate (as demon-
strated in Fig. 6). Scheduling an application with high check-
pointing overhead (i.e., larger OCI) during the later part of
the failure rate curve is likely to result in lower overall lost
work. Similarly, scheduling a light-weight application (i.e.,
smaller OCI) during the earlier part of the failure rate curve
decreases the amount of lost work per failure. Therefore, it
increases the useful work done per failure occurrence. How-
ever, this creates new challenges.

As Fig. 7 shows, while switching late, in order to avoid
failures, may potentially save large amount of average lost
work per failure for the heavy-weight application, it can also
degrade the performance for the heavy-weight application.
This is because the application cannot produce the same
amount of useful work as in the baseline, where each ap-
plication gets a fair share of the runtime. On the other hand,
switching too soon (1) exposes the heavy-weight application
to a higher failure rate, and (2) degrades the performance of
the light-weight application. Therefore, Shiraz encapsulates
an analytical model that determines the optimal switching
point to dynamically adapt to the failure rate.

The formulation and details of this model are presented
below. We refer to the light-weight application as LW and
the heavy-weight application as HW . Using Daly’s formula,
the OCI’s for the two applications can be expressed as:

OCILW =
√
2MδLW − δ and OCIHW =

√
2MδHW − δ

(1)
Where system MTBF, checkpoint overhead for light weight
application and heavy weight application are denoted by M ,
δLW , and δHW , respectively.

First, we need to estimate the baseline performance for
the two given applications. Recall, that in the conventional
scheme, the applications are switched at every failure. Let
us suppose that both the applications are executed for a total
of Ttotal time. We note that switching at a failure boundary is
equivalent to switching after an infinite amount of time since
the last failure. This helps in developing a unified framework
for modeling both baseline and Shiraz.

Estimating different components of the execution (useful
work, checkpoint overhead, and lost work) requires knowing

Failure FailureSwitch PointShiraz

Shiraz+

Switch Point

App 1 Useful Work
App 1 Checkpoint
App 1 Lost Work

App 2 Useful Work
App 2 Checkpoint
App 2 Lost Work

Figure 7: Effect of different switch points between failures.

the number of failures. The number of failures between two
time instances (tstart and tend) can be estimated as follows:

Failnum
(tstart,tend) =

Ttotal

M
× (e−(tstart

λ)β − e−(
tend
λ)β) (2)

Where λ and β are the scale and shape parameter for
Weibull distribution, respectively (Section 2). We note that
the scale parameter can be derived from the MTBF: λ =

M
Γ(1+ 1

β)
. Eq. 2 can be used to derive the total number of

failures in time Ttotal as follows.

Failnum
total =

Ttotal

M
× (1− e−(

Ttotal
λ)β) (3)

In the baseline case, where the application gets switched
at every failure, each of the two applications essentially gets
to run for Ttotal

2 time (in the baseline case Ttotal =
Ttotal
2). Thus,

the total lost work in the baseline case for both applications
can be estimated as:

T LW
lost-base = ϵ× (OCILW + δLW)× Failnum

total (4)
THW

lost-base = ϵ× (OCIHW + δHW)× Failnum
total (5)

Where ϵ is the average fraction of lost work per failure.
For estimating useful work and checkpointing overhead, we
can divide the time segment between two failures in chunks
of optimal checkpointing interval plus checkpointing over-
head (OCI+δ). For probabilistic modeling, one can imagine
that there are infinite such segments and calculate the prob-
ability of failure after each segment. Note that the average
number of such segments is M

(OCI+δ) . As discussed previ-
ously, the number of failures between time segments i and
i+ 1 is given by Failnum

(i×(OCILW+δLW),(i+1)×(OCILW+δLW)). As a
short hand notation, we denote this as Failnum

i,i+1(OCILW +
δLW). Successful completion of a segment results in use-
ful work equivalent to the optimal checkpointing interval.
Therefore, the useful work for the two applications in the
baseline case can be mathematically expressed as:

T LW
useful-base =

∞∑

i=1

i× OCILW × Failnum
i,i+1(OCILW + δLW) (6)

THW
useful-base =

∞∑

i=1

i× OCIHW × Failnum
i,i+1(OCIHW + δHW) (7)

86

The hazard rate monotonically decreases between two
failures, although that does not imply that the system

becomes more or less reliable over a long period of time

Observation 2: System failure rate
is not constant over time

The hazard rate monotonically decreases between two
failures, although that does not imply that the system

becomes more or less reliable over a long period of time

Observation 2: System failure rate
is not constant over time

Figure 1: Temporal failure distribution on weekly basis for multiple HPC systems.

Figure 2: Inter-arrival failure distribution for multiple HPC systems (time between two failures).

Contributions: We leverage information about temporal
characteristics of failures and variations in checkpointing
overhead among applications to improve system throughput.
This work introduces, Shiraz1, a novel scheme, to improve
the overall system throughput (defined as total useful work
done per unit time) by intelligently scheduling applications
with different checkpointing overheads under varying tem-
poral characteristics of system failures. This paper also pro-
poses a novel variant of Shiraz, called Shiraz+, which specif-
ically reduces the overall checkpointing overhead of the sys-
tem while improving the system throughput and maintain-
ing individual application performance levels. Shiraz+ re-
duces the I/O pressure on the back-end and mitigates storage
contention. Therefore, it can also potentially improve the ef-
fective I/O performance for other applications running on a
large-scale HPC system.

Evaluation: Our evaluation results show that Shiraz im-
proves system throughput under a wide variety of circum-
stances: on peta- and exa-scale platforms; on a range of
checkpointing overheads; and with multiple real-world HPC
applications. Our evaluation is based on extensive experi-
mental, modeling, and simulation results, which are guided
by real-world large-scale HPC system parameters. For a rep-
resentative set of real-world large-scale HPC applications,
Shiraz is shown to save up to $285,000 on a petascale sys-
tem and $890,000 on a projected exascale system (with 5
years of anticipated system lifetime) and hence, can effec-
tively pay towards future faster storage subsystem. Shiraz+
reduces the data movement by up to 52% for a variety of ap-
plications and system characteristics, without degrading the
overall system throughput or individual application perfor-
mance (Section 5).

1 Shiraz is a conveniently chosen acronym of SHaring Intelligently
ReliAbility Zones. Shiraz is also a type of red wine whose origin is a curi-
ous case.

2. Motivation
A naı̈ve strategy for improving system throughput would be
to identify periods when the system is distinctly more stable
(or less stable) compared to the average period and schedule
applications with higher checkpointing overhead (or lower
checkpointing overhead). Figure 1 shows that for large-scale
HPC systems such distinct periods of stability may not exist
and brief stable periods are followed by long periods of fluc-
tuation [1]. We also note that waiting for a period when the
system is more reliable can lead to starvation for applications
with large checkpointing overheads.

Fortunately, we can find changing failure rate character-
istics when we analyze failure characteristics at finer gran-
ularity (i.e., inter-arrival times between two failures). Note
that failures considered in this study are ones that cause an
application to crash and recover from last checkpoint. Fig-
ure 2 shows that a large fraction of failures are likely to oc-
cur much before the MTBF. We refer to this as the tempo-
ral recurrence behavior of failures. This has been shown and
modeled extensively for many other current and past HPC
systems [9, 17, 36, 38, 40]. This property is captured by the
hazard rate of the Weibull distribution which changes be-
tween consecutive failures (instead of being constant in case
of the exponential distribution). The shape of the hazard rate
is primarily characterized by the shape parameter (β). For
β < 1, the hazard rate is high right after a failure, but it
decreases over time until the next failure [32].

Multiple prior studies have shown that β varies from 0.4
to 0.7 for HPC systems [9, 36, 38, 40]. We find similar
results, but since determining shape parameter is not a main
contribution of this work, we omit those results. In summary,
one can schedule applications within two failures to exploit
changing reliability characteristics.

Next, we show evidence that large-scale scientific ap-
plications have significant variations in their checkpointing
overhead. Table 1 shows the checkpointing cost of applica-
tions from different scientific domains running at different

84

Figure 1: Temporal failure distribution on weekly basis for multiple HPC systems.

Figure 2: Inter-arrival failure distribution for multiple HPC systems (time between two failures).

Contributions: We leverage information about temporal
characteristics of failures and variations in checkpointing
overhead among applications to improve system throughput.
This work introduces, Shiraz1, a novel scheme, to improve
the overall system throughput (defined as total useful work
done per unit time) by intelligently scheduling applications
with different checkpointing overheads under varying tem-
poral characteristics of system failures. This paper also pro-
poses a novel variant of Shiraz, called Shiraz+, which specif-
ically reduces the overall checkpointing overhead of the sys-
tem while improving the system throughput and maintain-
ing individual application performance levels. Shiraz+ re-
duces the I/O pressure on the back-end and mitigates storage
contention. Therefore, it can also potentially improve the ef-
fective I/O performance for other applications running on a
large-scale HPC system.

Evaluation: Our evaluation results show that Shiraz im-
proves system throughput under a wide variety of circum-
stances: on peta- and exa-scale platforms; on a range of
checkpointing overheads; and with multiple real-world HPC
applications. Our evaluation is based on extensive experi-
mental, modeling, and simulation results, which are guided
by real-world large-scale HPC system parameters. For a rep-
resentative set of real-world large-scale HPC applications,
Shiraz is shown to save up to $285,000 on a petascale sys-
tem and $890,000 on a projected exascale system (with 5
years of anticipated system lifetime) and hence, can effec-
tively pay towards future faster storage subsystem. Shiraz+
reduces the data movement by up to 52% for a variety of ap-
plications and system characteristics, without degrading the
overall system throughput or individual application perfor-
mance (Section 5).

1 Shiraz is a conveniently chosen acronym of SHaring Intelligently
ReliAbility Zones. Shiraz is also a type of red wine whose origin is a curi-
ous case.

2. Motivation
A naı̈ve strategy for improving system throughput would be
to identify periods when the system is distinctly more stable
(or less stable) compared to the average period and schedule
applications with higher checkpointing overhead (or lower
checkpointing overhead). Figure 1 shows that for large-scale
HPC systems such distinct periods of stability may not exist
and brief stable periods are followed by long periods of fluc-
tuation [1]. We also note that waiting for a period when the
system is more reliable can lead to starvation for applications
with large checkpointing overheads.

Fortunately, we can find changing failure rate character-
istics when we analyze failure characteristics at finer gran-
ularity (i.e., inter-arrival times between two failures). Note
that failures considered in this study are ones that cause an
application to crash and recover from last checkpoint. Fig-
ure 2 shows that a large fraction of failures are likely to oc-
cur much before the MTBF. We refer to this as the tempo-
ral recurrence behavior of failures. This has been shown and
modeled extensively for many other current and past HPC
systems [9, 17, 36, 38, 40]. This property is captured by the
hazard rate of the Weibull distribution which changes be-
tween consecutive failures (instead of being constant in case
of the exponential distribution). The shape of the hazard rate
is primarily characterized by the shape parameter (β). For
β < 1, the hazard rate is high right after a failure, but it
decreases over time until the next failure [32].

Multiple prior studies have shown that β varies from 0.4
to 0.7 for HPC systems [9, 36, 38, 40]. We find similar
results, but since determining shape parameter is not a main
contribution of this work, we omit those results. In summary,
one can schedule applications within two failures to exploit
changing reliability characteristics.

Next, we show evidence that large-scale scientific ap-
plications have significant variations in their checkpointing
overhead. Table 1 shows the checkpointing cost of applica-
tions from different scientific domains running at different

84

Switch between applications at every failure

Light applications (LW) have lower average lost work per
failure compared to heavy applications (HW)

Observation III:
Conventional scheduling is inefficient

Shiraz: Key Idea

Schedule a light-weight application after a failure, and switch to a
heavy-weight application, at an optimal point between two failures

Optimal Switching Point
Optimal switching point is the number of checkpoints that LW

application takes before yielding to the HW application such that
the system throughput (i.e., total useful work per failure) is
maximized, without hurting any application’s performance

LW
 U

se
fu

l

Optimal
Switch Point

To
ta

l U
se

fu
l

HW
 U

se
fu

l

0

0

0

Switch Point

Shiraz Model
• Inputs MTBF (M), Checkpointing overheads (ẟLW and ẟHW)

ẟ-factor = ẟHW / ẟLW (ratio of checkpointing overheads)

• Output Optimal switching point (k) -- the number of checkpoints by
LW application before scheduling HW application

TLW
useful-shiraz � TLW

useful-base = THW
useful-shiraz � THW

useful-base

s.t. (TLW
useful-shiraz � TLW

useful-base) � 0

and (THW
useful-shiraz � THW

useful-base) � 0
<latexit sha1_base64="Wt/WebVL7z2PmxQLQimvyCS96tI=">AAADc3icrVJLb9NAEN7YPEp4pSBx6YFVA1U5xLIRElyQKrj0wKFITVMpDtF4PUlWXa/d3TEiWP4B/D1u/Asu3FmnpvQlwaEjrfTtzDfzzYwmKZS0FIY/Op5/4+at22t3unfv3X/wsLf+6MDmpRE4FLnKzWECFpXUOCRJCg8Lg5AlCkfJ0fsmPvqMxspc79OywEkGcy1nUgA513S9823/UxUTfiGTVR9GdT09/ZUWZ6Ua2IU08LWu+YD/i9o04ohbb88yd/+/6JXUtmgcd1eBygYU1PFxCSnn29fe/Au+Fc/xmId/BUGnf/TOCV7PYKeC3WmvHwbhyvhlELWgz1rbm/a+x2kuygw1CQXWjqOwoEkFhqRQWHdjJ1SAOII5jh3UkKGdVKubqflz50n5LDfuaeIr79mMCjJrl1nimBnQwl6MNc6rYuOSZm8mldRFSajFiZAbl1POmwPkqTQoSC0dAGGk65WLBRgQ5M60WUJ0ceTL4OBlEIVB9PFVf+ddu441tsE22TaL2Gu2w3bZHhsy0fnpPfGeetz75W/4m/6zE6rXaXMes3PmD34DPsIk8g==</latexit><latexit sha1_base64="Wt/WebVL7z2PmxQLQimvyCS96tI=">AAADc3icrVJLb9NAEN7YPEp4pSBx6YFVA1U5xLIRElyQKrj0wKFITVMpDtF4PUlWXa/d3TEiWP4B/D1u/Asu3FmnpvQlwaEjrfTtzDfzzYwmKZS0FIY/Op5/4+at22t3unfv3X/wsLf+6MDmpRE4FLnKzWECFpXUOCRJCg8Lg5AlCkfJ0fsmPvqMxspc79OywEkGcy1nUgA513S9823/UxUTfiGTVR9GdT09/ZUWZ6Ua2IU08LWu+YD/i9o04ohbb88yd/+/6JXUtmgcd1eBygYU1PFxCSnn29fe/Au+Fc/xmId/BUGnf/TOCV7PYKeC3WmvHwbhyvhlELWgz1rbm/a+x2kuygw1CQXWjqOwoEkFhqRQWHdjJ1SAOII5jh3UkKGdVKubqflz50n5LDfuaeIr79mMCjJrl1nimBnQwl6MNc6rYuOSZm8mldRFSajFiZAbl1POmwPkqTQoSC0dAGGk65WLBRgQ5M60WUJ0ceTL4OBlEIVB9PFVf+ddu441tsE22TaL2Gu2w3bZHhsy0fnpPfGeetz75W/4m/6zE6rXaXMes3PmD34DPsIk8g==</latexit><latexit sha1_base64="Wt/WebVL7z2PmxQLQimvyCS96tI=">AAADc3icrVJLb9NAEN7YPEp4pSBx6YFVA1U5xLIRElyQKrj0wKFITVMpDtF4PUlWXa/d3TEiWP4B/D1u/Asu3FmnpvQlwaEjrfTtzDfzzYwmKZS0FIY/Op5/4+at22t3unfv3X/wsLf+6MDmpRE4FLnKzWECFpXUOCRJCg8Lg5AlCkfJ0fsmPvqMxspc79OywEkGcy1nUgA513S9823/UxUTfiGTVR9GdT09/ZUWZ6Ua2IU08LWu+YD/i9o04ohbb88yd/+/6JXUtmgcd1eBygYU1PFxCSnn29fe/Au+Fc/xmId/BUGnf/TOCV7PYKeC3WmvHwbhyvhlELWgz1rbm/a+x2kuygw1CQXWjqOwoEkFhqRQWHdjJ1SAOII5jh3UkKGdVKubqflz50n5LDfuaeIr79mMCjJrl1nimBnQwl6MNc6rYuOSZm8mldRFSajFiZAbl1POmwPkqTQoSC0dAGGk65WLBRgQ5M60WUJ0ceTL4OBlEIVB9PFVf+ddu441tsE22TaL2Gu2w3bZHhsy0fnpPfGeetz75W/4m/6zE6rXaXMes3PmD34DPsIk8g==</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="0q2OU/kRPjY5DU373z2qYSvqV7Y=">AAADaHicrVJNT9tAEN04tKUBSuihFw5dQYvggGX3AhekSr1w6IFKhCDFaTReT5IV67XZHSOC5R/Qv9db/0UvvXcdwjcSHBhppbfz3u6bGU2cK2kpCP40vObcq9dv5t+2FhaX3i23VxaPbFYYgR2Rqcwcx2BRSY0dkqTwODcIaaywG598q/nuGRorM31Ikxz7KYy0HEoB5FKDlcavw59lRHhOJi2/d6tqcH0rLA4LtW3H0sBFVfFt/pS0LsQJN/ZuK/ef/+mj0tmnUdSaEqX1ya+i0wISzjdfvPgtvhGN8JQHN4agkyu/O4Yv09i1YWvQXg/8YBr8IQhnYJ3N4mDQ/h0lmShS1CQUWNsLg5z6JRiSQmHVipxRDuIERthzUEOKtl9Od6bin10m4cPMuKOJT7O3X5SQWjtJY6dMgcb2PlcnH+N6BQ13+6XUeUGoxaWRa5dTxusF5Ik0KEhNHABhpKuVizEYEOTWtB5CeL/lh+Doix8GfvgjYPNsla2xTRayHfaV7bMD1mGi8df74H30uPevudpcuxyX15jN7T27E81P/wGUFCQS</latexit><latexit sha1_base64="0q2OU/kRPjY5DU373z2qYSvqV7Y=">AAADaHicrVJNT9tAEN04tKUBSuihFw5dQYvggGX3AhekSr1w6IFKhCDFaTReT5IV67XZHSOC5R/Qv9db/0UvvXcdwjcSHBhppbfz3u6bGU2cK2kpCP40vObcq9dv5t+2FhaX3i23VxaPbFYYgR2Rqcwcx2BRSY0dkqTwODcIaaywG598q/nuGRorM31Ikxz7KYy0HEoB5FKDlcavw59lRHhOJi2/d6tqcH0rLA4LtW3H0sBFVfFt/pS0LsQJN/ZuK/ef/+mj0tmnUdSaEqX1ya+i0wISzjdfvPgtvhGN8JQHN4agkyu/O4Yv09i1YWvQXg/8YBr8IQhnYJ3N4mDQ/h0lmShS1CQUWNsLg5z6JRiSQmHVipxRDuIERthzUEOKtl9Od6bin10m4cPMuKOJT7O3X5SQWjtJY6dMgcb2PlcnH+N6BQ13+6XUeUGoxaWRa5dTxusF5Ik0KEhNHABhpKuVizEYEOTWtB5CeL/lh+Doix8GfvgjYPNsla2xTRayHfaV7bMD1mGi8df74H30uPevudpcuxyX15jN7T27E81P/wGUFCQS</latexit><latexit sha1_base64="i4F9X4iyrCdt26E6+v9IKZwYRQI=">AAADc3icrVJLb9NAEN7YPEp4NAWJSw+sGqjKIZbNBS5IFVx64FCkpqkUh2i8niSrrtfu7hgRLP8A/h43/gUX7qxTU/qS4NCRVvp25pv5ZkaTFEpaCsMfHc+/dfvO3bV73fsPHj5a7208PrR5aQQORa5yc5SARSU1DkmSwqPCIGSJwlFy/L6Jjz6jsTLXB7QscJLBXMuZFEDONd3ofDv4VMWEX8hk1YdRXU/PfqXFWakGdiENfK1rPuD/ojaNOOL22/PMvf8vei21LRrH3VWgsgEFdXxSQsr5zo03/5Jvx3M84eFfQdDpH70Lgjcz2Jlgd9rrh0G4Mn4VRC3os9b2p73vcZqLMkNNQoG14ygsaFKBISkU1t3YCRUgjmGOYwc1ZGgn1epmav7CeVI+y417mvjKez6jgszaZZY4Zga0sJdjjfO62Lik2ZtJJXVREmpxKuTG5ZTz5gB5Kg0KUksHQBjpeuViAQYEuTNtlhBdHvkqOHwVRGEQfQz7u+/adayxTbbFdljEXrNdtsf22ZCJzk/vqffM494vf9Pf8p+fUr1Om/OEXTB/8Bs9giTu</latexit><latexit sha1_base64="Wt/WebVL7z2PmxQLQimvyCS96tI=">AAADc3icrVJLb9NAEN7YPEp4pSBx6YFVA1U5xLIRElyQKrj0wKFITVMpDtF4PUlWXa/d3TEiWP4B/D1u/Asu3FmnpvQlwaEjrfTtzDfzzYwmKZS0FIY/Op5/4+at22t3unfv3X/wsLf+6MDmpRE4FLnKzWECFpXUOCRJCg8Lg5AlCkfJ0fsmPvqMxspc79OywEkGcy1nUgA513S9823/UxUTfiGTVR9GdT09/ZUWZ6Ua2IU08LWu+YD/i9o04ohbb88yd/+/6JXUtmgcd1eBygYU1PFxCSnn29fe/Au+Fc/xmId/BUGnf/TOCV7PYKeC3WmvHwbhyvhlELWgz1rbm/a+x2kuygw1CQXWjqOwoEkFhqRQWHdjJ1SAOII5jh3UkKGdVKubqflz50n5LDfuaeIr79mMCjJrl1nimBnQwl6MNc6rYuOSZm8mldRFSajFiZAbl1POmwPkqTQoSC0dAGGk65WLBRgQ5M60WUJ0ceTL4OBlEIVB9PFVf+ddu441tsE22TaL2Gu2w3bZHhsy0fnpPfGeetz75W/4m/6zE6rXaXMes3PmD34DPsIk8g==</latexit><latexit sha1_base64="Wt/WebVL7z2PmxQLQimvyCS96tI=">AAADc3icrVJLb9NAEN7YPEp4pSBx6YFVA1U5xLIRElyQKrj0wKFITVMpDtF4PUlWXa/d3TEiWP4B/D1u/Asu3FmnpvQlwaEjrfTtzDfzzYwmKZS0FIY/Op5/4+at22t3unfv3X/wsLf+6MDmpRE4FLnKzWECFpXUOCRJCg8Lg5AlCkfJ0fsmPvqMxspc79OywEkGcy1nUgA513S9823/UxUTfiGTVR9GdT09/ZUWZ6Ua2IU08LWu+YD/i9o04ohbb88yd/+/6JXUtmgcd1eBygYU1PFxCSnn29fe/Au+Fc/xmId/BUGnf/TOCV7PYKeC3WmvHwbhyvhlELWgz1rbm/a+x2kuygw1CQXWjqOwoEkFhqRQWHdjJ1SAOII5jh3UkKGdVKubqflz50n5LDfuaeIr79mMCjJrl1nimBnQwl6MNc6rYuOSZm8mldRFSajFiZAbl1POmwPkqTQoSC0dAGGk65WLBRgQ5M60WUJ0ceTL4OBlEIVB9PFVf+ddu441tsE22TaL2Gu2w3bZHhsy0fnpPfGeetz75W/4m/6zE6rXaXMes3PmD34DPsIk8g==</latexit><latexit sha1_base64="Wt/WebVL7z2PmxQLQimvyCS96tI=">AAADc3icrVJLb9NAEN7YPEp4pSBx6YFVA1U5xLIRElyQKrj0wKFITVMpDtF4PUlWXa/d3TEiWP4B/D1u/Asu3FmnpvQlwaEjrfTtzDfzzYwmKZS0FIY/Op5/4+at22t3unfv3X/wsLf+6MDmpRE4FLnKzWECFpXUOCRJCg8Lg5AlCkfJ0fsmPvqMxspc79OywEkGcy1nUgA513S9823/UxUTfiGTVR9GdT09/ZUWZ6Ua2IU08LWu+YD/i9o04ohbb88yd/+/6JXUtmgcd1eBygYU1PFxCSnn29fe/Au+Fc/xmId/BUGnf/TOCV7PYKeC3WmvHwbhyvhlELWgz1rbm/a+x2kuygw1CQXWjqOwoEkFhqRQWHdjJ1SAOII5jh3UkKGdVKubqflz50n5LDfuaeIr79mMCjJrl1nimBnQwl6MNc6rYuOSZm8mldRFSajFiZAbl1POmwPkqTQoSC0dAGGk65WLBRgQ5M60WUJ0ceTL4OBlEIVB9PFVf+ddu441tsE22TaL2Gu2w3bZHhsy0fnpPfGeetz75W/4m/6zE6rXaXMes3PmD34DPsIk8g==</latexit><latexit sha1_base64="Wt/WebVL7z2PmxQLQimvyCS96tI=">AAADc3icrVJLb9NAEN7YPEp4pSBx6YFVA1U5xLIRElyQKrj0wKFITVMpDtF4PUlWXa/d3TEiWP4B/D1u/Asu3FmnpvQlwaEjrfTtzDfzzYwmKZS0FIY/Op5/4+at22t3unfv3X/wsLf+6MDmpRE4FLnKzWECFpXUOCRJCg8Lg5AlCkfJ0fsmPvqMxspc79OywEkGcy1nUgA513S9823/UxUTfiGTVR9GdT09/ZUWZ6Ua2IU08LWu+YD/i9o04ohbb88yd/+/6JXUtmgcd1eBygYU1PFxCSnn29fe/Au+Fc/xmId/BUGnf/TOCV7PYKeC3WmvHwbhyvhlELWgz1rbm/a+x2kuygw1CQXWjqOwoEkFhqRQWHdjJ1SAOII5jh3UkKGdVKubqflz50n5LDfuaeIr79mMCjJrl1nimBnQwl6MNc6rYuOSZm8mldRFSajFiZAbl1POmwPkqTQoSC0dAGGk65WLBRgQ5M60WUJ0ceTL4OBlEIVB9PFVf+ddu441tsE22TaL2Gu2w3bZHhsy0fnpPfGeetz75W/4m/6zE6rXaXMes3PmD34DPsIk8g==</latexit><latexit sha1_base64="Wt/WebVL7z2PmxQLQimvyCS96tI=">AAADc3icrVJLb9NAEN7YPEp4pSBx6YFVA1U5xLIRElyQKrj0wKFITVMpDtF4PUlWXa/d3TEiWP4B/D1u/Asu3FmnpvQlwaEjrfTtzDfzzYwmKZS0FIY/Op5/4+at22t3unfv3X/wsLf+6MDmpRE4FLnKzWECFpXUOCRJCg8Lg5AlCkfJ0fsmPvqMxspc79OywEkGcy1nUgA513S9823/UxUTfiGTVR9GdT09/ZUWZ6Ua2IU08LWu+YD/i9o04ohbb88yd/+/6JXUtmgcd1eBygYU1PFxCSnn29fe/Au+Fc/xmId/BUGnf/TOCV7PYKeC3WmvHwbhyvhlELWgz1rbm/a+x2kuygw1CQXWjqOwoEkFhqRQWHdjJ1SAOII5jh3UkKGdVKubqflz50n5LDfuaeIr79mMCjJrl1nimBnQwl6MNc6rYuOSZm8mldRFSajFiZAbl1POmwPkqTQoSC0dAGGk65WLBRgQ5M60WUJ0ceTL4OBlEIVB9PFVf+ddu441tsE22TaL2Gu2w3bZHhsy0fnpPfGeetz75W/4m/6zE6rXaXMes3PmD34DPsIk8g==</latexit><latexit sha1_base64="Wt/WebVL7z2PmxQLQimvyCS96tI=">AAADc3icrVJLb9NAEN7YPEp4pSBx6YFVA1U5xLIRElyQKrj0wKFITVMpDtF4PUlWXa/d3TEiWP4B/D1u/Asu3FmnpvQlwaEjrfTtzDfzzYwmKZS0FIY/Op5/4+at22t3unfv3X/wsLf+6MDmpRE4FLnKzWECFpXUOCRJCg8Lg5AlCkfJ0fsmPvqMxspc79OywEkGcy1nUgA513S9823/UxUTfiGTVR9GdT09/ZUWZ6Ua2IU08LWu+YD/i9o04ohbb88yd/+/6JXUtmgcd1eBygYU1PFxCSnn29fe/Au+Fc/xmId/BUGnf/TOCV7PYKeC3WmvHwbhyvhlELWgz1rbm/a+x2kuygw1CQXWjqOwoEkFhqRQWHdjJ1SAOII5jh3UkKGdVKubqflz50n5LDfuaeIr79mMCjJrl1nimBnQwl6MNc6rYuOSZm8mldRFSajFiZAbl1POmwPkqTQoSC0dAGGk65WLBRgQ5M60WUJ0ceTL4OBlEIVB9PFVf+ddu441tsE22TaL2Gu2w3bZHhsy0fnpPfGeetz75W/4m/6zE6rXaXMes3PmD34DPsIk8g==</latexit>

Failure Failure

Time Between Two Failures

Fa
ilu

re
 R

at
e

Switch Point

App 1 Useful Work
App 1 Checkpoint
App 1 Lost Work

App 2 Useful Work
App 2 Checkpoint
App 2 Lost Work

Fig. 6: Shiraz switches two applications in between two fail-
ures to reduce the overall lost work per failure by scheduling
the heavy-weight application during periods with relatively
lower system failure rate.

Failure FailureSwitch PointShiraz

Shiraz+

Switch Point

App 1 Useful Work
App 1 Checkpoint
App 1 Lost Work

App 2 Useful Work
App 2 Checkpoint
App 2 Lost Work

Fig. 7: Effect of choosing a switch point between two failures.

work per failure for the heavy-weight application, it can also
degrade the performance for the heavy-weight application.
This is because the application will not be able to produce the
same amount of useful work as in the baseline, where each
application gets a fair share of the runtime. Similarly, switch-
ing too soon will (1) expose the heavy-weight application to a
higher number of failures, and (2) degrade the performance of
the light-weight application. Therefore, Shiraz encapsulates an
analytical model that determines the optimal switching point
to dynamically adapt to the failure rate.

The formulation and details of this model are presented
below. We refer to the light-weight application as LW and
the heavy-weight application as HW . Using Daly’s formula,
the OCI’s for the two applications can be expressed as:

OCILW =
p
2M�LW�� and OCIHW =

p
2M�HW�� (1)

Where system MTBF, checkpoint overhead for light weight
application and heavy weight application are denoted by M ,
�LW , and �HW , respectively.

First, we need to estimate the baseline performance for
the two given applications. Recall, that in the conventional
scheme, the applications are switched at every failure. Let us
suppose that both the applications are executed for a total of
Ttotal time. We note that switching at a failure boundary is
equivalent to switching after an infinite amount of time since
the last failure. This helps in developing a unified framework
for modeling both baseline and Shiraz.

Estimating different components of the execution (useful
work, checkpoint overhead, and lost work) requires knowing
the number of failures. The number of failures between two
time instances (tstart and tend) can be estimated as follows:

Failnum
(tstart,tend) =

Ttotal

M
⇥ (e�(tstart

�)� � e�(
tend
�)�) (2)

Where � and � are the scale and shape parameter for
Weibull distribution, respectively (Section II). We note that the
scale parameter can be derived from the MTBF: � = M

�(1+ 1
�)

.
Eq. 2 can be used to derive the total number of failures in
time Ttotal as follows.

Failnum
total =

Ttotal

M
⇥ (1� e�(

Ttotal
�)�) (3)

In the baseline case, where the application gets switched at
every failure, each of the two applications essentially gets to
run for Ttotal

2 time (in the baseline case Ttotal =
Ttotal
2). Thus, the

total lost work in the baseline case for both applications can
be estimated as:

T LW
lost-base = ✏⇥ (OCILW + �LW)⇥ Failnum

total (4)
THW

lost-base = ✏⇥ (OCIHW + �HW)⇥ Failnum
total (5)

Where ✏ is the average fraction of lost work per failure.
For estimating useful work and checkpointing overhead, we
can divide the time segment between two failures in chunks
of optimal checkpointing interval plus checkpointing overhead
(OCI + �). For probabilistic modeling, one can imagine that
there are infinite such segments and calculate the probability
of failure after each segment. Note that the average number
of such segments is M

(OCI+�) . As discussed previously, the
number of failures between time segments i and i + 1 is
given by Failnum

(i⇥(OCILW+�LW),(i+1)⇥(OCILW+�LW)). As a short hand
notation, we denote this as Failnum

i,i+1(OCILW+�LW). Successful
completion of a segment results in useful work equivalent
to the optimal checkpointing interval. Therefore, the useful
work for the two applications in the baseline case can be
mathematically expressed as:

T LW
useful-base =

1X

i=1

i⇥ OCILW ⇥ Failnum
i,i+1(OCILW + �LW) (6)

THW
useful-base =

1X

i=1

i⇥ OCIHW ⇥ Failnum
i,i+1(OCIHW + �HW) (7)

Similarly, the checkpointing overhead per successful seg-
ment of (OCI + �) is equal to the cost of one checkpoint.
Therefore, the I/O overhead in the baseline case is:

T LW
io-base =

1X

i=1

i⇥ �LW ⇥ Failnum
i,i+1(OCILW + �LW) (8)

THW
io-base =

1X

i=1

i⇥ �HW ⇥ Failnum
i,i+1(OCIHW + �HW) (9)

This approach of modeling leads to an elegant formulation
for the Shiraz case as well. The index for the summation

Failure Failure

Time Between Two Failures

Fa
ilu

re
 R

at
e

Switch Point

App 1 Useful Work
App 1 Checkpoint
App 1 Lost Work

App 2 Useful Work
App 2 Checkpoint
App 2 Lost Work

Fig. 6: Shiraz switches two applications in between two fail-
ures to reduce the overall lost work per failure by scheduling
the heavy-weight application during periods with relatively
lower system failure rate.

Failure FailureSwitch PointShiraz

Shiraz+

Switch Point

App 1 Useful Work
App 1 Checkpoint
App 1 Lost Work

App 2 Useful Work
App 2 Checkpoint
App 2 Lost Work

Fig. 7: Effect of choosing a switch point between two failures.

work per failure for the heavy-weight application, it can also
degrade the performance for the heavy-weight application.
This is because the application will not be able to produce the
same amount of useful work as in the baseline, where each
application gets a fair share of the runtime. Similarly, switch-
ing too soon will (1) expose the heavy-weight application to a
higher number of failures, and (2) degrade the performance of
the light-weight application. Therefore, Shiraz encapsulates an
analytical model that determines the optimal switching point
to dynamically adapt to the failure rate.

The formulation and details of this model are presented
below. We refer to the light-weight application as LW and
the heavy-weight application as HW . Using Daly’s formula,
the OCI’s for the two applications can be expressed as:

OCILW =
p
2M�LW�� and OCIHW =

p
2M�HW�� (1)

Where system MTBF, checkpoint overhead for light weight
application and heavy weight application are denoted by M ,
�LW , and �HW , respectively.

First, we need to estimate the baseline performance for
the two given applications. Recall, that in the conventional
scheme, the applications are switched at every failure. Let us
suppose that both the applications are executed for a total of
Ttotal time. We note that switching at a failure boundary is
equivalent to switching after an infinite amount of time since
the last failure. This helps in developing a unified framework
for modeling both baseline and Shiraz.

Estimating different components of the execution (useful
work, checkpoint overhead, and lost work) requires knowing
the number of failures. The number of failures between two
time instances (tstart and tend) can be estimated as follows:

Failnum
(tstart,tend) =

Ttotal

M
⇥ (e�(tstart

�)� � e�(
tend
�)�) (2)

Where � and � are the scale and shape parameter for
Weibull distribution, respectively (Section II). We note that the
scale parameter can be derived from the MTBF: � = M

�(1+ 1
�)

.
Eq. 2 can be used to derive the total number of failures in
time Ttotal as follows.

Failnum
total =

Ttotal

M
⇥ (1� e�(

Ttotal
�)�) (3)

In the baseline case, where the application gets switched at
every failure, each of the two applications essentially gets to
run for Ttotal

2 time (in the baseline case Ttotal =
Ttotal
2). Thus, the

total lost work in the baseline case for both applications can
be estimated as:

T LW
lost-base = ✏⇥ (OCILW + �LW)⇥ Failnum

total (4)
THW

lost-base = ✏⇥ (OCIHW + �HW)⇥ Failnum
total (5)

Where ✏ is the average fraction of lost work per failure.
For estimating useful work and checkpointing overhead, we
can divide the time segment between two failures in chunks
of optimal checkpointing interval plus checkpointing overhead
(OCI + �). For probabilistic modeling, one can imagine that
there are infinite such segments and calculate the probability
of failure after each segment. Note that the average number
of such segments is M

(OCI+�) . As discussed previously, the
number of failures between time segments i and i + 1 is
given by Failnum

(i⇥(OCILW+�LW),(i+1)⇥(OCILW+�LW)). As a short hand
notation, we denote this as Failnum

i,i+1(OCILW+�LW). Successful
completion of a segment results in useful work equivalent
to the optimal checkpointing interval. Therefore, the useful
work for the two applications in the baseline case can be
mathematically expressed as:

T LW
useful-base =

1X

i=1

i⇥ OCILW ⇥ Failnum
i,i+1(OCILW + �LW) (6)

THW
useful-base =

1X

i=1

i⇥ OCIHW ⇥ Failnum
i,i+1(OCIHW + �HW) (7)

Similarly, the checkpointing overhead per successful seg-
ment of (OCI + �) is equal to the cost of one checkpoint.
Therefore, the I/O overhead in the baseline case is:

T LW
io-base =

1X

i=1

i⇥ �LW ⇥ Failnum
i,i+1(OCILW + �LW) (8)

THW
io-base =

1X

i=1

i⇥ �HW ⇥ Failnum
i,i+1(OCIHW + �HW) (9)

This approach of modeling leads to an elegant formulation
for the Shiraz case as well. The index for the summation

Failure Failure

Time Between Two Failures

Fa
ilu

re
 R

at
e

Switch Point

App 1 Useful Work
App 1 Checkpoint
App 1 Lost Work

App 2 Useful Work
App 2 Checkpoint
App 2 Lost Work

Fig. 6: Shiraz switches two applications in between two fail-
ures to reduce the overall lost work per failure by scheduling
the heavy-weight application during periods with relatively
lower system failure rate.

Failure FailureSwitch PointShiraz

Shiraz+

Switch Point

App 1 Useful Work
App 1 Checkpoint
App 1 Lost Work

App 2 Useful Work
App 2 Checkpoint
App 2 Lost Work

Fig. 7: Effect of choosing a switch point between two failures.

work per failure for the heavy-weight application, it can also
degrade the performance for the heavy-weight application.
This is because the application will not be able to produce the
same amount of useful work as in the baseline, where each
application gets a fair share of the runtime. Similarly, switch-
ing too soon will (1) expose the heavy-weight application to a
higher number of failures, and (2) degrade the performance of
the light-weight application. Therefore, Shiraz encapsulates an
analytical model that determines the optimal switching point
to dynamically adapt to the failure rate.

The formulation and details of this model are presented
below. We refer to the light-weight application as LW and
the heavy-weight application as HW . Using Daly’s formula,
the OCI’s for the two applications can be expressed as:

OCILW =
p
2M�LW�� and OCIHW =

p
2M�HW�� (1)

Where system MTBF, checkpoint overhead for light weight
application and heavy weight application are denoted by M ,
�LW , and �HW , respectively.

First, we need to estimate the baseline performance for
the two given applications. Recall, that in the conventional
scheme, the applications are switched at every failure. Let us
suppose that both the applications are executed for a total of
Ttotal time. We note that switching at a failure boundary is
equivalent to switching after an infinite amount of time since
the last failure. This helps in developing a unified framework
for modeling both baseline and Shiraz.

Estimating different components of the execution (useful
work, checkpoint overhead, and lost work) requires knowing
the number of failures. The number of failures between two
time instances (tstart and tend) can be estimated as follows:

Failnum
(tstart,tend) =

Ttotal

M
⇥ (e�(tstart

�)� � e�(
tend
�)�) (2)

Where � and � are the scale and shape parameter for
Weibull distribution, respectively (Section II). We note that the
scale parameter can be derived from the MTBF: � = M

�(1+ 1
�)

.
Eq. 2 can be used to derive the total number of failures in
time Ttotal as follows.

Failnum
total =

Ttotal

M
⇥ (1� e�(

Ttotal
�)�) (3)

In the baseline case, where the application gets switched at
every failure, each of the two applications essentially gets to
run for Ttotal

2 time (in the baseline case Ttotal =
Ttotal
2). Thus, the

total lost work in the baseline case for both applications can
be estimated as:

T LW
lost-base = ✏⇥ (OCILW + �LW)⇥ Failnum

total (4)
THW

lost-base = ✏⇥ (OCIHW + �HW)⇥ Failnum
total (5)

Where ✏ is the average fraction of lost work per failure.
For estimating useful work and checkpointing overhead, we
can divide the time segment between two failures in chunks
of optimal checkpointing interval plus checkpointing overhead
(OCI + �). For probabilistic modeling, one can imagine that
there are infinite such segments and calculate the probability
of failure after each segment. Note that the average number
of such segments is M

(OCI+�) . As discussed previously, the
number of failures between time segments i and i + 1 is
given by Failnum

(i⇥(OCILW+�LW),(i+1)⇥(OCILW+�LW)). As a short hand
notation, we denote this as Failnum

i,i+1(OCILW+�LW). Successful
completion of a segment results in useful work equivalent
to the optimal checkpointing interval. Therefore, the useful
work for the two applications in the baseline case can be
mathematically expressed as:

T LW
useful-base =

1X

i=1

i⇥ OCILW ⇥ Failnum
i,i+1(OCILW + �LW) (6)

THW
useful-base =

1X

i=1

i⇥ OCIHW ⇥ Failnum
i,i+1(OCIHW + �HW) (7)

Similarly, the checkpointing overhead per successful seg-
ment of (OCI + �) is equal to the cost of one checkpoint.
Therefore, the I/O overhead in the baseline case is:

T LW
io-base =

1X

i=1

i⇥ �LW ⇥ Failnum
i,i+1(OCILW + �LW) (8)

THW
io-base =

1X

i=1

i⇥ �HW ⇥ Failnum
i,i+1(OCIHW + �HW) (9)

This approach of modeling leads to an elegant formulation
for the Shiraz case as well. The index for the summation

terms does not range from 1 to 1 now. Instead, for the
light-weight application, the index will range from 1 to the
switching point (k). We refer to the switching point as the
number of checkpoints (say, k) the light-weight application
takes before yielding to the heavy-weight application. Note
that the total time period the light-weight application gets to
run is k ⇥ (OCILW + �LW). For the heavy-weight application,
the index will range from k to 1. Note that for the heavy-
weight application, each of the segments (i, i+1, . . .) are still
(OCIHW + �HW) long, but the first such segment starts after
k ⇥ (OCILW + �LW) time since the last failure. Now, we can
write the expressions for useful work, checkpointing overhead,
and lost work for the Shiraz case as follows:

T LW
useful-shiraz =

kX

i=1

i⇥ OCILW ⇥ Failnum
i,i+1(OCILW + �LW) (10)

THW
useful-shiraz =

1X

i=k

i⇥ OCIHW ⇥ Failnum
i,i+1(OCIHW + �HW) (11)

T LW
io-shiraz =

kX

i=1

i⇥ �LW ⇥ Failnum
i,i+1(OCILW + �LW) (12)

THW
io-shiraz =

1X

i=k

i⇥ �HW ⇥ Failnum
i,i+1(OCIHW + �HW) (13)

T LW
lost-shiraz = ✏⇥ (OCILW + �LW)⇥ Failnum

LW-fraction (14)

THW
lost-shiraz = ✏⇥ (OCIHW + �HW)⇥ Failnum

HW-fraction (15)

We note that the failure can still occur before k checkpoints
of the light-weight application. Our model is probabilistic
and hence, sums up the probabilities over all the segments.
Failnum

LW-fraction refers to the number of failures observed during
the time light-weight application runs (i.e., after a failure
until k checkpoints, summed over all such periods). Similarly,
Failnum

HW-fraction refers to the number of failures observed during
the time heavy-weight application gets to runs (i.e., after
k checkpoints of the light-weight application until the next
failure, summed over all such periods).

Where is optimal point (optimal value of k)?: If the goal
is to simply maximize the system throughput (useful work
done per unit time), one can simply set k to 1 . However,
this results in starvation of the heavy-weight application. In
this approach, the system throughput improvement comes
from favoring the light-weight application over the heavy-
weight application at all times. The key constraint is that
both applications should not see any performance degradation
compared to the baseline. That is,

T LW
useful-shiraz � T LW

useful-base and THW
useful-shiraz � THW

useful-base (16)

Note that a range of values for k will satisfy Eq. 16. The
highest of the values of k in this range will be the theoretical
optimal switching point. It will result in the maximum useful
work done per unit time for the whole system. However,
it will not necessarily be fair to both the applications. Re-
call that increasing k improves the light-weight application’s
performance (useful work done per unit time), however, it

Failure FailureSwitch Point

Shiraz

Shiraz+

2x

x

App 1 Useful Work
App 1 Checkpoint
App 1 Lost Work

App 2 Useful Work
App 2 Checkpoint
App 2 Lost Work

Fig. 8: Shiraz+: Reducing the checkpointing overhead.

also decreases the heavy-weight application’s performance.
Therefore, choosing the highest such value of k that satisfies
Eq. 16 will result in zero improvement for heavy-weight
application. To address this issue, Shiraz choose a suboptimal
value of k that provides fairness, i.e., equal benefits to both the
applications. Therefore, Shiraz uses the following constraints
to derive optimal value of k:

T LW
useful-shiraz � T LW

useful-base = THW
useful-shiraz � THW

useful-base

s.t. (T LW
useful-shiraz � T LW

useful-base) � 0

and (THW
useful-shiraz � THW

useful-base) � 0

Shiraz solves this optimization problem numerically to deter-
mine the optimal switching point (k) such that the system
throughput is maximized but both applications are treated
fairly. Shiraz will return k = 1 if no system throughput
improvement can be achieved in the above equation.

Shiraz+ for reducing I/O overhead: Shiraz model demon-
strates that choosing optimal switching point can lead to
an improvement in system throughput without performance
degradation for individual applications, but it does not specif-
ically address the problem of high data movement caused
by checkpointing. Checkpointing causes excessive pressure
and contention on the I/O subsystem. Therefore, reducing
checkpointing overhead leads to alleviating the I/O pressure,
reduction in data movement (i.e., higher energy efficiency),
and potentially better performance for other applications too.
Shiraz+ works on top of Shiraz and trades the additional per-
formance gain obtained by Shiraz to reduce the checkpointing
overhead.

The key idea is to increase the checkpointing interval of
heavy-weight application (Fig 8). The intuition behind this
idea is simple: heavy-weight application observes effectively
higher MTBF and hence, can afford to run at a checkpointing
interval that is larger than its OCI (and thus, reduce the I/O
cost), though at the risk of losing performance.

Determining the new checkpointing interval for heavy-
weight application is a new optimization problem that Shiraz
and Shiraz+ open up. But, for this work, Shiraz+ takes a rela-
tively simpler approach and explores increasing the OCIHW

by an integer factor (2⇥, 3⇥, . . .) and evaluating its impact
on performance and checkpointing overhead (Section V). We
also note that this is a more practical approach since it
does not require the application programmers to change the
checkpointing interval to some new value (e.g., 2⇥ stretch in
OCI can be emulated at the system level).

More modeling details and tricks in the paper

Shiraz Model Validation
Shiraz’s per-application predictions validated against simulation

Useful work, checkpointing overhead, and lost work
Different system scale and storage system I/O bandwidth
Optimal switching point

No assumptions about order and type of scheduled applications
Extensive validation in the paper

Shiraz Optimal Switching Points

System Type Checkpointing
Overhead Ratio

Model Optimal
Switching Point

Simulation Optimal
Switch Point

Exascale 5x 6 6
Exascale 25x 13 13
Exascale 100x 26 26
Exascale 1000x 81 79
Petascale 5x 12 11
Petascale 25x 26 24
Petascale 100x 51 51
Petascale 1000x 161 161

Shiraz model accurately predicts the optimal switch point across
different scales and different checkpointing overhead ratios

Shiraz Evaluation

Exploration of real-world system parameters through simulations
Peta/Exa- scale, varying checkpointing overheads, multiple applications

Real-world prototype on a cluster with system-level checkpointing

Workload
Manager

(e.g. SLURM) Compute Nodes

App 2

P3 P4

P5 P6

Job
Queue

Parallel
Storage
System

Checkpoint
Incoming Jobs

Upon Application
Switch or Failure

Periodic
Checkpoint

App 1

P0 P1

P2

Shiraz
And

Shiraz+

Allocate
Nodes

Application
Checkpoint
Time and
System
MTBF

Periodic
Checkpoint

Optimal Switching Point: Insights

Checkpoint overhead ratio
increases

Petascale to Exascale
System MTBF decreases

Optimal switching point shifts to the
right and benefits increase as the

difference in the time-to-checkpoint
between applications increases

Optimal switching point shifts to
the left as the MTBF decreases
but the benefits increase (i.e.,

Shiraz is more useful at exascale)

Intuitively, one may think the optimal
switching point to be half of the MTBF (in

terms of time), but Shiraz discovers that it can
be larger than even the MTBF in many cases!

Optimal Switching Point: Insights

Shiraz is Effective in Multi-Job MixTABLE I: Differences in checkpointing cost among large-scale
HPC applications.

Machine Application Domain Checkpointing
Duration (sec.)

Titan (OLCF) Climate Change Simulation 1.5
with the Community Earth
System Model

Hopper (NERSC) 20th Century Reanalysis 2
Franklin (NERSC)
Jaguar (ORNL) Molecular Simulation 6
Hopper (NERSC) in Energy Biosciences
Carver and Computational Predictions 50
Euclid (NERSC) of Trans. Factor Binding Sites
Cori (NERSC) Chombo-crunch 70
Hopper (NERSC) Climate Science for a 150

Sustainable Energy Future
Hopper (NERSC) Laser Plasma Interactions 1800
Hopper (NERSC) Plasma Based Accelerators 2000
Hopper (NERSC) Plasma Science Studies 2700

Fig. 3: Normalized cost of checkpointing for CoMD, SNAP
and miniFE applications for different configurations (experi-
mentally measured using system-level checkpointing [7], nor-
malized to CoMD config-1).

scale HPC applications [23].
To further confirm the existence of this trend, we conducted

a real-system experiment where we experimentally measured
the cost of checkpointing for three representative applications:
CoMD, SNAP, and miniFE [26], [22] using DMTCP system-
level checkpointing [7], under three different configurations
(Figure 3).

We observed that (1) different applications have widely
varying checkpointing overheads (up to a difference of more
than 40x), and (2) even the same application can exhibit
different checkpointing overheads, depending on the input
parameters. These variations in checkpointing overheads open
up opportunities for new optimizations in the presence of
multiple applications performing checkpointing on large-scale
systems that experience system failures.

Next, we will show how Shiraz exploits observations about
temporal recurrence of failures and checkpointing overhead to
improve overall system throughput.

III. SHIRAZ: DESIGN AND MODEL

In a multi-application environment, a fair scheduler switches
the applications at every failure, as shown in Fig. 4. By switch-
ing at every failure, the scheduler provides each application
an equal chance to do useful work. This traditional approach
does not exploit the two key factors discussed in Section II:
temporal recurrence characteristics of failures, and variation
in checkpointing cost among applications.

First, we point out that the average lost work due to a failure
is different for different types of applications. Fig. 5 shows that

Failure

App 1 Useful Work
App 1 Checkpoint
App 1 Lost Work

App 2 Useful Work
App 2 Checkpoint
App 2 Lost Work

Failure Failure

Fig. 4: Conventional scheduling (Baseline): Switch between
applications after every failure.

Failure

App 1 Useful Work
App 1 Checkpoint
App 1 Lost Work

App 2 Useful Work
App 2 Checkpoint
App 2 Lost Work

Failure

Fig. 5: Heavy-weight application is likely to have higher
average lost work per failure.

an application with higher checkpointing overhead (referred
as heavy-weight application) is likely to have higher average
lost work compared to an application with relatively lower
checkpointing overhead (referred as light-weight application).
This is because the optimal checkpointing interval (OCI) for
the heavy-weight application is larger than the OCI of light-
weight application, according to Daly’s formula:

p
2M� �

�, where M is the system MTBF and � is the checkpoint
overhead of the application. Thus, larger OCI leads to higher
average lost work due to a failure (Fig. 5).

Implication: It is beneficial to schedule the heavy-weight
application when the system MTBF is higher. Unfortunately,
it is hard to find consistent higher MTBF periods during the
operational time of a system and a suboptimal choice may
result in performance degradation for the heavy-weight appli-
cation (as discussed in Section II). To address this challenge,
we leverage the non-constant failure rate between two failures.
The hazard rate decreases between two failures and hence,
statistically, the probability of a failure is higher right after a
failure and it decreases over time. This observation can be
exploited by scheduling the light-weight application before
scheduling the heavy-weight application.

Shiraz Key Idea: The key idea is to intelligently schedule
applications with different checkpointing overheads between
two failures. Shiraz schedules a heavy-weight application
during periods with relatively lower system failure rate, while
a light-weight application is scheduled during periods with rel-
atively higher system failure rate (as demonstrated in Fig. 6).
Scheduling an application with high checkpointing overhead
(i.e., larger OCI) during the later part of the failure rate curve is
likely to result in lower overall lost work. Similarly, scheduling
a light-weight application (i.e., smaller OCI) during the earlier
part of the failure rate curve decreases the amount of lost work
per failure. Therefore, it increases the useful work done per
failure occurrence. However, this creates new challenges.

As Fig. 7 shows, while switching late, in order to avoid
failures, may potentially save large amount of average lost

Shiraz extended to a multi-job mix by intelligent application pairing
No application is hurt in the job mix for a representative workload mix

Throughput improvement increases at exascale (total 157 hours)

Shiraz: Energy Saving Analysis
Representative workload mix 40 jobs (only 5 heavy-weight
and rest 35 light-weight applications) run for a year

Shiraz results in savings* of $57K per annum for a 10 MW
Petascale system (MTBF: 20 hours); savings of $285K over
a lifetime of 5 years

Shiraz results in savings* of $178K per annum for a 20 MW
future Exascale system (MTBF: 5 hours); savings for $890K
over a lifetime of 5 years

* Electricity @ $0.1 per KW-hour

Shiraz improves system
throughput, but does not mitigate

the I/O overhead!

Shiraz+: Key Idea

Use the throughput gains obtained by Shiraz to reduce the
checkpointing overhead of HW application

Intuition: HW application is already running in a high-reliability zone

Shiraz+ Reduces I/O Overhead

60% reduction in checkpointing overhead when checkpointing
frequency is reduced by 4x; throughput degrades only by 4.8%

No throughput degradation with 2x reduction in checkpointing
frequency and 40% reduction in checkpointing overhead

Shiraz+ can reduce the overall
checkpointing overhead by
52%, without degrading the
system throughput (with 3x
OCI)

With 4x OCI, the overall
checkpointing overhead
reduces by up to 60%, with a
throughput degradation of 1%

Shiraz+ is Effective in Multi-Job Mix

Who gets hit by failures: Part II

Who gets hit by failures in space!

“Failures in Large Scale Systems: Long-term Measurement, Analysis,
and Implications”, SC 2017.

“Understanding and Exploiting Spatial Properties of System Failures on
Extreme- Scale HPC Systems”, DSN 2015.

Uneven Spatial Failure Distribution
Titan XK7

Cage level distribution

Cabinet level distribution Cabinet columns

Fa
ilu

re
 ty

pe

(a) (b)

Fig. 3: Distribution of each failure-type across rows (a) and columns (b) of cabinets, normalized by the frequency of each
failure-type instead of the total number of failures to understand the characteristic of each failure-type better.

0.0%$

0.5%$

1.0%$

1.5%$

2.0%$

1$ 19
$

37
$

55
$

73
$

91
$

10
9$

12
7$

14
5$

16
3$

18
1$

19
9$P

er
ce

nt
ag

e
of

 F
ai

lu
re

s
in

 th
e

C
ab

in
et

Cabinets)

(a)

0.0%$

0.2%$

0.4%$

0.6%$

0.8%$

1.0%$

1$ 60
$

11
9$

17
8$

23
7$

29
6$

35
5$

41
4$

47
3$

53
2$

59
1$P

er
ce

nt
ag

e
of

 F
ai

lu
re

s
in

 th
e

C
ag

e

Cages&
(b)

(c)

Fig. 2: Histogram of failures across 200 cabinets (a), and across
600 cages (b), and heatmap showing the spatial distribution of
all failures across 200 cabinets physically organized as 25 rows
and 8 columns (c).

Next, we plot the spatial distribution of failure in the row-
column space of the cabinets. Fig. 2(c) shows the distribution
of failures across the cabinets based on the physical location
of the cabinet. From the figure, we can again observe that
all cabinets are not equally likely to be hit by a failure.
However, it is very challenging to accurately reason about
this non-uniform distribution since multiple factors such as
environmental, physical factors may be affecting this spatial
distribution simultaneously. We start our further discussion
by investigating how different failure-types are spatially dis-
tributed in the space.

Observation 1. The spatial distribution of failures is not
uniform. Due to an ensemble of physical characteristics of
the system, some locations may be more prone to failures than
others.

B. Spatial Distribution of Failure-types

One may question the observation from Fig. 2(c) arguing
that a few dominant failures may happen more frequently
in certain cabinets and skew the distribution of failures in

space. Therefore, in Fig. 3, we show the distribution of failures
across rows and columns for different failure-types. It has
been normalized by the number of failures of “that” type
instead of the total number of failures. This normalization
brings out the property of each failure-type better instead of
being affected by the dominant failures. We observe that nearly
all failure-types are unequally distributed in space as well.
We have attempted to correlate this unequal distribution with
power and cooling infrastructure and other facility parameters,
but there is not enough strong evidence to suggest why a
particular type of failure was distributed in a skewed manner.
However, this finding has important implications for future
fault-tolerance research. Our finding implies that large-scale
jobs may have significantly different probability of getting
interrupted by a system failure event depending on their
node allocation. System-administrators can use this kind of
information to allocate mission-critical jobs to relatively more
reliable cabinets.

Next, we investigate what happens within a cabinet? Fig. 4
shows the distribution of failures among different cage levels
inside a cabinet, blades in a cage, and nodes within a blade.
While there are no clear visible trends at the blade- and node-
level, we observe that the likelihood of failures happening in
the upper cages (cage 2) is higher. This is true for almost
all failure-types, however not for all (e.g., kernel panic).
Therefore, system administrators can also use this behavior to
prioritize mission-critical production jobs towards lower levels
of cages (cage 0 and cage 1).

Observation 2. Most of the failure-types are not equally
distributed in space. This information can be used to better
schedule a mission-critical job or to estimate the probability
of job interruption depending on job’s node allocation layout.

C. Understanding Re-occurrence Behavior of Different
Failure-types

In this section, we analyze if one failure-type is likely to
occur soon after a another failure-type. First, we understand
how this happens within the grace-period. Fig. 5(a) shows
the number of occurrences of a failure-type following another
failure-type within a 5 second grace-period. We obtained
similar results for a 300 second grace-period that we have
applied (not shown here due to space constraints). We observe
that several failure-types are reported multiple times within

3

(a) (b)

Fig. 3: Distribution of each failure-type across rows (a) and columns (b) of cabinets, normalized by the frequency of each
failure-type instead of the total number of failures to understand the characteristic of each failure-type better.

0.0%$

0.5%$

1.0%$

1.5%$

2.0%$

1$ 19
$

37
$

55
$

73
$

91
$

10
9$

12
7$

14
5$

16
3$

18
1$

19
9$P

er
ce

nt
ag

e
of

 F
ai

lu
re

s
in

 th
e

C
ab

in
et

Cabinets)
(a)

0.0%$

0.2%$

0.4%$

0.6%$

0.8%$

1.0%$

1$ 60
$

11
9$

17
8$

23
7$

29
6$

35
5$

41
4$

47
3$

53
2$

59
1$P

er
ce

nt
ag

e
of

 F
ai

lu
re

s
in

 th
e

C
ag

e

Cages&
(b)

(c)

Fig. 2: Histogram of failures across 200 cabinets (a), and across
600 cages (b), and heatmap showing the spatial distribution of
all failures across 200 cabinets physically organized as 25 rows
and 8 columns (c).

Next, we plot the spatial distribution of failure in the row-
column space of the cabinets. Fig. 2(c) shows the distribution
of failures across the cabinets based on the physical location
of the cabinet. From the figure, we can again observe that
all cabinets are not equally likely to be hit by a failure.
However, it is very challenging to accurately reason about
this non-uniform distribution since multiple factors such as
environmental, physical factors may be affecting this spatial
distribution simultaneously. We start our further discussion
by investigating how different failure-types are spatially dis-
tributed in the space.

Observation 1. The spatial distribution of failures is not
uniform. Due to an ensemble of physical characteristics of
the system, some locations may be more prone to failures than
others.

B. Spatial Distribution of Failure-types

One may question the observation from Fig. 2(c) arguing
that a few dominant failures may happen more frequently
in certain cabinets and skew the distribution of failures in

space. Therefore, in Fig. 3, we show the distribution of failures
across rows and columns for different failure-types. It has
been normalized by the number of failures of “that” type
instead of the total number of failures. This normalization
brings out the property of each failure-type better instead of
being affected by the dominant failures. We observe that nearly
all failure-types are unequally distributed in space as well.
We have attempted to correlate this unequal distribution with
power and cooling infrastructure and other facility parameters,
but there is not enough strong evidence to suggest why a
particular type of failure was distributed in a skewed manner.
However, this finding has important implications for future
fault-tolerance research. Our finding implies that large-scale
jobs may have significantly different probability of getting
interrupted by a system failure event depending on their
node allocation. System-administrators can use this kind of
information to allocate mission-critical jobs to relatively more
reliable cabinets.

Next, we investigate what happens within a cabinet? Fig. 4
shows the distribution of failures among different cage levels
inside a cabinet, blades in a cage, and nodes within a blade.
While there are no clear visible trends at the blade- and node-
level, we observe that the likelihood of failures happening in
the upper cages (cage 2) is higher. This is true for almost
all failure-types, however not for all (e.g., kernel panic).
Therefore, system administrators can also use this behavior to
prioritize mission-critical production jobs towards lower levels
of cages (cage 0 and cage 1).

Observation 2. Most of the failure-types are not equally
distributed in space. This information can be used to better
schedule a mission-critical job or to estimate the probability
of job interruption depending on job’s node allocation layout.

C. Understanding Re-occurrence Behavior of Different
Failure-types

In this section, we analyze if one failure-type is likely to
occur soon after a another failure-type. First, we understand
how this happens within the grace-period. Fig. 5(a) shows
the number of occurrences of a failure-type following another
failure-type within a 5 second grace-period. We obtained
similar results for a 300 second grace-period that we have
applied (not shown here due to space constraints). We observe
that several failure-types are reported multiple times within

3

Cabinet rows

Fa
ilu

re
 ty

pe

SC17, November 12–17, 2017, Denver, CO, USA Saurabh Gupta, Tirthak Patel, Christian Engelmann, Devesh Tiwari

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X1
0

X1
1

X1
2

X1
3

X1
4

X1
5

X1
6

X1
7

X1
8

X1
9

X2
0

X2
1

X2
2

X2
3

X2
4

0.000

0.004

0.008

0.012

value

% Failures Distribution by Rows and Columns of Cabinets

(a) Jaguar XT5

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X1
0

X1
1

X1
2

X1
3

X1
4

X1
5

X1
6

X1
7

X1
8

X1
9

X2
0

X2
1

X2
2

X2
3

X2
4

0.0000

0.0025

0.0050

0.0075

0.0100
value

% Failures Distribution by Rows and Columns of Cabinets

(b) Jaguar XK6

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X1
0

X1
1

X1
2

X1
3

X1
4

X1
5

X1
6

X1
7

X1
8

X1
9

X2
0

X2
1

X2
2

X2
3

X2
4

0.005

0.010

0.015

value

% Failures Distribution by Rows and Columns of Cabinets

(c) Titan XK7

Figure 13: Non-uniform spatial distribution of system failures at the cabinet-level for different systems. Jaguar XT4 and Eos
not plotted due to space restriction but show similar behavior.

0.0%

1.0%

2.0%

0 100 200 300 400 500 600

Fr
ac

tio
n

of

Fa
ilu

re
s Titan

0.0%
1.0%
2.0%
3.0%

0 100 200 300 400 500 600

Fr
ac

tio
n

of

Fa
ilu

re
s Jaguar XK6

0.0%

0.5%

1.0%

0 100 200 300 400 500 600

Fr
ac

tio
n

of

Fa
ilu

re
s

Cages

Jaguar XT5

Figure 14: Non-uniform spatial distribution of system fail-
ures at the cage-level for different systems.

NRP (T ,Θ) =

M∑

i=1

P (θn = Ai ∩ tn − t0 < T ,∃Fn | θ0 = Ai)

× P (θ0 = Ai) (3)

NRP (T ,Θ) =

M∑

i=1

P (θn = Ai ∩ tn −t0 < T ,∃Fn ∩ θ0 = Ai) (4)

As shown in above equations, the neighborhood recurrence effect
is a function of future time window (T) and granularity of locale
(Θ). In our analysis, we define the granularity of locale Θ with
cabinet, cage, blade/module, and node. We calculate NRP at these
granularities over different time windows.

Fig. 15(a)-(d) compare the systems with respect to their neigh-
borhood recurrence effect at each granularity. First, we observe
that neighborhood recurrence effect is present in all systems at all
computing granularities (node, blade, cage, cabinet). Jaguar XT4,
Jaguar XK6 and Titan show similar neighborhood recurrence trends
over time, while Eos and Jaguar XT5 show significantly different
behavior.

Second, the relative neighborhood recurrence effect between
these systems also changes as the time window is changed. For
example, Eos has higher neighborhood recurrence effect for smaller

time windows while Jaguar XT4 has higher neighborhood recur-
rence effect if the time window is larger than 64 hours.

We note that neighborhood recurrence effect is observed even
for relatively smaller scale system (i.e., Eos) at each granularity (in
Fig. 15(a)-(d)), indicating that MTBF (or scale-normalized MTBF)
alone is not enough to capture the spatial characteristics of system
failure events. There are two different phenomenon that are respon-
sible for this behavior. First, the degree of temporal recurrence is
significantly high, i.e., the temporal recurrence parameter is smaller
than other three systems. This implies that the likelihood of subse-
quent failures after a failure event is higher, and therefore, we see
significant portion of failures show up in a smaller time window
after a failure, although the MTBF is quite large. Second, other than
the temporal recurrence in failures, there is significant neighbor-
hood recurrence in failures where subsequent failures occur in the
vicinity of previous failure events.

We point out that temporal recurrence is a system level observa-
tion and it is not capturing the location dimension. On the other
hand, neighborhood recurrence deals with the spatio-temporal be-
havior. Also, when comparing Jaguar XT5 with other systems, it
shows similar degree of temporal recurrence property as others,
but has much lower neighborhood recurrence effect. This further
strengthens our argument that spatio-temporal behavior is not a
manifestation of temporal recurrence alone, and instead it is a fun-
damental characteristic of system failures which should be used
to describe the reliability characteristics of a system. We clarify
that certain locations may experience higher failures temporarily
(e.g., more failures in higher cages which are relatively hotter than
lower cages), however, this alone doesn’t encapsulate the neigh-
borhood recurrence behavior. Even regions with relatively lower
failure concentration exhibit neighborhood recurrence behavior.

To further support our argument, we computed the correlation
coefficient between neighborhood recurrence effect (at the cage
level) and MTBF for each quarter (−0.68,−0.38,−0.79,and − 0.53
for Jaguar XT4, Jaguar XT5, Jaguar XK6 and Titan system, respec-
tively). Similarly, we computed the correlation coefficient between
neighborhood recurrence effect (at the cage level) and temporal
recurrence parameter for each quarter. The correlation coefficients
are −0.72,−0.45, 0.92,and−0.30 for Jaguar XT4, Jaguar XT5, Jaguar
XK6 and Titan system, respectively. This indicates that neighbor-
hood recurrence effect can be both positively and negatively corre-
lated with temporal recurrence, depending upon the system. Pres-
ence of both types of correlation suggests that neighborhood recur-
rence effect is not subsumed by the temporal recurrence parameter

Titan XK7

SC17, November 12–17, 2017, Denver, CO, USA Saurabh Gupta, Tirthak Patel, Christian Engelmann, Devesh Tiwari

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

X
0
X
1
X
2
X
3
X
4
X
5
X
6
X
7
X
8
X
9

X
10
X
11
X
12
X
13
X
14
X
15
X
16
X
17
X
18
X
19
X
20
X
21
X
22
X
23
X
24

0.000

0.004

0.008

0.012

value

% Failures Distribution by Rows and Columns of Cabinets

(a) Jaguar XT5

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

X
0
X
1
X
2
X
3
X
4
X
5
X
6
X
7
X
8
X
9

X
10
X
11
X
12
X
13
X
14
X
15
X
16
X
17
X
18
X
19
X
20
X
21
X
22
X
23
X
24

0.0000

0.0025

0.0050

0.0075

0.0100
value

% Failures Distribution by Rows and Columns of Cabinets

(b) Jaguar XK6

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

X
0
X
1
X
2
X
3
X
4
X
5
X
6
X
7
X
8
X
9

X
10
X
11
X
12
X
13
X
14
X
15
X
16
X
17
X
18
X
19
X
20
X
21
X
22
X
23
X
24

0.005

0.010

0.015

value

% Failures Distribution by Rows and Columns of Cabinets

(c) Titan XK7

Figure 13: Non-uniform spatial distribution of system failures at the cabinet-level for different systems. Jaguar XT4 and Eos
not plotted due to space restriction but show similar behavior.

0.0%

1.0%

2.0%

0 100 200 300 400 500 600

Fr
ac

tio
n

of

Fa
ilu

re
s Titan

0.0%
1.0%
2.0%
3.0%

0 100 200 300 400 500 600

Fr
ac

tio
n

of

Fa
ilu

re
s Jaguar XK6

0.0%

0.5%

1.0%

0 100 200 300 400 500 600

Fr
ac

tio
n

of

Fa
ilu

re
s

Cages

Jaguar XT5

Figure 14: Non-uniform spatial distribution of system fail-
ures at the cage-level for different systems.

NRP (T ,Θ) =

M∑

i=1

P (θn = Ai ∩ tn − t0 < T ,∃Fn | θ0 = Ai)

× P (θ0 = Ai) (3)

NRP (T ,Θ) =

M∑

i=1

P (θn = Ai ∩ tn −t0 < T ,∃Fn ∩ θ0 = Ai) (4)

As shown in above equations, the neighborhood recurrence effect
is a function of future time window (T) and granularity of locale
(Θ). In our analysis, we define the granularity of locale Θ with
cabinet, cage, blade/module, and node. We calculate NRP at these
granularities over different time windows.

Fig. 15(a)-(d) compare the systems with respect to their neigh-
borhood recurrence effect at each granularity. First, we observe
that neighborhood recurrence effect is present in all systems at all
computing granularities (node, blade, cage, cabinet). Jaguar XT4,
Jaguar XK6 and Titan show similar neighborhood recurrence trends
over time, while Eos and Jaguar XT5 show significantly different
behavior.

Second, the relative neighborhood recurrence effect between
these systems also changes as the time window is changed. For
example, Eos has higher neighborhood recurrence effect for smaller

time windows while Jaguar XT4 has higher neighborhood recur-
rence effect if the time window is larger than 64 hours.

We note that neighborhood recurrence effect is observed even
for relatively smaller scale system (i.e., Eos) at each granularity (in
Fig. 15(a)-(d)), indicating that MTBF (or scale-normalized MTBF)
alone is not enough to capture the spatial characteristics of system
failure events. There are two different phenomenon that are respon-
sible for this behavior. First, the degree of temporal recurrence is
significantly high, i.e., the temporal recurrence parameter is smaller
than other three systems. This implies that the likelihood of subse-
quent failures after a failure event is higher, and therefore, we see
significant portion of failures show up in a smaller time window
after a failure, although the MTBF is quite large. Second, other than
the temporal recurrence in failures, there is significant neighbor-
hood recurrence in failures where subsequent failures occur in the
vicinity of previous failure events.

We point out that temporal recurrence is a system level observa-
tion and it is not capturing the location dimension. On the other
hand, neighborhood recurrence deals with the spatio-temporal be-
havior. Also, when comparing Jaguar XT5 with other systems, it
shows similar degree of temporal recurrence property as others,
but has much lower neighborhood recurrence effect. This further
strengthens our argument that spatio-temporal behavior is not a
manifestation of temporal recurrence alone, and instead it is a fun-
damental characteristic of system failures which should be used
to describe the reliability characteristics of a system. We clarify
that certain locations may experience higher failures temporarily
(e.g., more failures in higher cages which are relatively hotter than
lower cages), however, this alone doesn’t encapsulate the neigh-
borhood recurrence behavior. Even regions with relatively lower
failure concentration exhibit neighborhood recurrence behavior.

To further support our argument, we computed the correlation
coefficient between neighborhood recurrence effect (at the cage
level) and MTBF for each quarter (−0.68,−0.38,−0.79,and − 0.53
for Jaguar XT4, Jaguar XT5, Jaguar XK6 and Titan system, respec-
tively). Similarly, we computed the correlation coefficient between
neighborhood recurrence effect (at the cage level) and temporal
recurrence parameter for each quarter. The correlation coefficients
are −0.72,−0.45, 0.92,and−0.30 for Jaguar XT4, Jaguar XT5, Jaguar
XK6 and Titan system, respectively. This indicates that neighbor-
hood recurrence effect can be both positively and negatively corre-
lated with temporal recurrence, depending upon the system. Pres-
ence of both types of correlation suggests that neighborhood recur-
rence effect is not subsumed by the temporal recurrence parameter

Holds True for Other Systems too!
SC17, November 12–17, 2017, Denver, CO, USA Saurabh Gupta, Tirthak Patel, Christian Engelmann, Devesh Tiwari

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

X
0
X
1
X
2
X
3
X
4
X
5
X
6
X
7
X
8
X
9

X
10
X
11
X
12
X
13
X
14
X
15
X
16
X
17
X
18
X
19
X
20
X
21
X
22
X
23
X
24

0.000

0.004

0.008

0.012

value

% Failures Distribution by Rows and Columns of Cabinets

(a) Jaguar XT5

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

X
0
X
1
X
2
X
3
X
4
X
5
X
6
X
7
X
8
X
9

X
10
X
11
X
12
X
13
X
14
X
15
X
16
X
17
X
18
X
19
X
20
X
21
X
22
X
23
X
24

0.0000

0.0025

0.0050

0.0075

0.0100
value

% Failures Distribution by Rows and Columns of Cabinets

(b) Jaguar XK6

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

X
0
X
1
X
2
X
3
X
4
X
5
X
6
X
7
X
8
X
9

X
10
X
11
X
12
X
13
X
14
X
15
X
16
X
17
X
18
X
19
X
20
X
21
X
22
X
23
X
24

0.005

0.010

0.015

value

% Failures Distribution by Rows and Columns of Cabinets

(c) Titan XK7

Figure 13: Non-uniform spatial distribution of system failures at the cabinet-level for different systems. Jaguar XT4 and Eos
not plotted due to space restriction but show similar behavior.

0.0%

1.0%

2.0%

0 100 200 300 400 500 600

Fr
ac

tio
n

of

Fa
ilu

re
s Titan

0.0%
1.0%
2.0%
3.0%

0 100 200 300 400 500 600

Fr
ac

tio
n

of

Fa
ilu

re
s Jaguar XK6

0.0%

0.5%

1.0%

0 100 200 300 400 500 600

Fr
ac

tio
n

of

Fa
ilu

re
s

Cages

Jaguar XT5

Figure 14: Non-uniform spatial distribution of system fail-
ures at the cage-level for different systems.

NRP (T ,Θ) =

M∑

i=1

P (θn = Ai ∩ tn − t0 < T ,∃Fn | θ0 = Ai)

× P (θ0 = Ai) (3)

NRP (T ,Θ) =

M∑

i=1

P (θn = Ai ∩ tn −t0 < T ,∃Fn ∩ θ0 = Ai) (4)

As shown in above equations, the neighborhood recurrence effect
is a function of future time window (T) and granularity of locale
(Θ). In our analysis, we define the granularity of locale Θ with
cabinet, cage, blade/module, and node. We calculate NRP at these
granularities over different time windows.

Fig. 15(a)-(d) compare the systems with respect to their neigh-
borhood recurrence effect at each granularity. First, we observe
that neighborhood recurrence effect is present in all systems at all
computing granularities (node, blade, cage, cabinet). Jaguar XT4,
Jaguar XK6 and Titan show similar neighborhood recurrence trends
over time, while Eos and Jaguar XT5 show significantly different
behavior.

Second, the relative neighborhood recurrence effect between
these systems also changes as the time window is changed. For
example, Eos has higher neighborhood recurrence effect for smaller

time windows while Jaguar XT4 has higher neighborhood recur-
rence effect if the time window is larger than 64 hours.

We note that neighborhood recurrence effect is observed even
for relatively smaller scale system (i.e., Eos) at each granularity (in
Fig. 15(a)-(d)), indicating that MTBF (or scale-normalized MTBF)
alone is not enough to capture the spatial characteristics of system
failure events. There are two different phenomenon that are respon-
sible for this behavior. First, the degree of temporal recurrence is
significantly high, i.e., the temporal recurrence parameter is smaller
than other three systems. This implies that the likelihood of subse-
quent failures after a failure event is higher, and therefore, we see
significant portion of failures show up in a smaller time window
after a failure, although the MTBF is quite large. Second, other than
the temporal recurrence in failures, there is significant neighbor-
hood recurrence in failures where subsequent failures occur in the
vicinity of previous failure events.

We point out that temporal recurrence is a system level observa-
tion and it is not capturing the location dimension. On the other
hand, neighborhood recurrence deals with the spatio-temporal be-
havior. Also, when comparing Jaguar XT5 with other systems, it
shows similar degree of temporal recurrence property as others,
but has much lower neighborhood recurrence effect. This further
strengthens our argument that spatio-temporal behavior is not a
manifestation of temporal recurrence alone, and instead it is a fun-
damental characteristic of system failures which should be used
to describe the reliability characteristics of a system. We clarify
that certain locations may experience higher failures temporarily
(e.g., more failures in higher cages which are relatively hotter than
lower cages), however, this alone doesn’t encapsulate the neigh-
borhood recurrence behavior. Even regions with relatively lower
failure concentration exhibit neighborhood recurrence behavior.

To further support our argument, we computed the correlation
coefficient between neighborhood recurrence effect (at the cage
level) and MTBF for each quarter (−0.68,−0.38,−0.79,and − 0.53
for Jaguar XT4, Jaguar XT5, Jaguar XK6 and Titan system, respec-
tively). Similarly, we computed the correlation coefficient between
neighborhood recurrence effect (at the cage level) and temporal
recurrence parameter for each quarter. The correlation coefficients
are −0.72,−0.45, 0.92,and−0.30 for Jaguar XT4, Jaguar XT5, Jaguar
XK6 and Titan system, respectively. This indicates that neighbor-
hood recurrence effect can be both positively and negatively corre-
lated with temporal recurrence, depending upon the system. Pres-
ence of both types of correlation suggests that neighborhood recur-
rence effect is not subsumed by the temporal recurrence parameter

Jaguar XT5
SC17, November 12–17, 2017, Denver, CO, USA Saurabh Gupta, Tirthak Patel, Christian Engelmann, Devesh Tiwari

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

X
0
X
1
X
2
X
3
X
4
X
5
X
6
X
7
X
8
X
9

X
10
X
11
X
12
X
13
X
14
X
15
X
16
X
17
X
18
X
19
X
20
X
21
X
22
X
23
X
24

0.000

0.004

0.008

0.012

value

% Failures Distribution by Rows and Columns of Cabinets

(a) Jaguar XT5

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

X
0
X
1
X
2
X
3
X
4
X
5
X
6
X
7
X
8
X
9

X
10
X
11
X
12
X
13
X
14
X
15
X
16
X
17
X
18
X
19
X
20
X
21
X
22
X
23
X
24

0.0000

0.0025

0.0050

0.0075

0.0100
value

% Failures Distribution by Rows and Columns of Cabinets

(b) Jaguar XK6

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

X
0
X
1
X
2
X
3
X
4
X
5
X
6
X
7
X
8
X
9

X
10
X
11
X
12
X
13
X
14
X
15
X
16
X
17
X
18
X
19
X
20
X
21
X
22
X
23
X
24

0.005

0.010

0.015

value

% Failures Distribution by Rows and Columns of Cabinets

(c) Titan XK7

Figure 13: Non-uniform spatial distribution of system failures at the cabinet-level for different systems. Jaguar XT4 and Eos
not plotted due to space restriction but show similar behavior.

0.0%

1.0%

2.0%

0 100 200 300 400 500 600

Fr
ac

tio
n

of

Fa
ilu

re
s Titan

0.0%
1.0%
2.0%
3.0%

0 100 200 300 400 500 600

Fr
ac

tio
n

of

Fa
ilu

re
s Jaguar XK6

0.0%

0.5%

1.0%

0 100 200 300 400 500 600

Fr
ac

tio
n

of

Fa
ilu

re
s

Cages

Jaguar XT5

Figure 14: Non-uniform spatial distribution of system fail-
ures at the cage-level for different systems.

NRP (T ,Θ) =

M∑

i=1

P (θn = Ai ∩ tn − t0 < T ,∃Fn | θ0 = Ai)

× P (θ0 = Ai) (3)

NRP (T ,Θ) =

M∑

i=1

P (θn = Ai ∩ tn −t0 < T ,∃Fn ∩ θ0 = Ai) (4)

As shown in above equations, the neighborhood recurrence effect
is a function of future time window (T) and granularity of locale
(Θ). In our analysis, we define the granularity of locale Θ with
cabinet, cage, blade/module, and node. We calculate NRP at these
granularities over different time windows.

Fig. 15(a)-(d) compare the systems with respect to their neigh-
borhood recurrence effect at each granularity. First, we observe
that neighborhood recurrence effect is present in all systems at all
computing granularities (node, blade, cage, cabinet). Jaguar XT4,
Jaguar XK6 and Titan show similar neighborhood recurrence trends
over time, while Eos and Jaguar XT5 show significantly different
behavior.

Second, the relative neighborhood recurrence effect between
these systems also changes as the time window is changed. For
example, Eos has higher neighborhood recurrence effect for smaller

time windows while Jaguar XT4 has higher neighborhood recur-
rence effect if the time window is larger than 64 hours.

We note that neighborhood recurrence effect is observed even
for relatively smaller scale system (i.e., Eos) at each granularity (in
Fig. 15(a)-(d)), indicating that MTBF (or scale-normalized MTBF)
alone is not enough to capture the spatial characteristics of system
failure events. There are two different phenomenon that are respon-
sible for this behavior. First, the degree of temporal recurrence is
significantly high, i.e., the temporal recurrence parameter is smaller
than other three systems. This implies that the likelihood of subse-
quent failures after a failure event is higher, and therefore, we see
significant portion of failures show up in a smaller time window
after a failure, although the MTBF is quite large. Second, other than
the temporal recurrence in failures, there is significant neighbor-
hood recurrence in failures where subsequent failures occur in the
vicinity of previous failure events.

We point out that temporal recurrence is a system level observa-
tion and it is not capturing the location dimension. On the other
hand, neighborhood recurrence deals with the spatio-temporal be-
havior. Also, when comparing Jaguar XT5 with other systems, it
shows similar degree of temporal recurrence property as others,
but has much lower neighborhood recurrence effect. This further
strengthens our argument that spatio-temporal behavior is not a
manifestation of temporal recurrence alone, and instead it is a fun-
damental characteristic of system failures which should be used
to describe the reliability characteristics of a system. We clarify
that certain locations may experience higher failures temporarily
(e.g., more failures in higher cages which are relatively hotter than
lower cages), however, this alone doesn’t encapsulate the neigh-
borhood recurrence behavior. Even regions with relatively lower
failure concentration exhibit neighborhood recurrence behavior.

To further support our argument, we computed the correlation
coefficient between neighborhood recurrence effect (at the cage
level) and MTBF for each quarter (−0.68,−0.38,−0.79,and − 0.53
for Jaguar XT4, Jaguar XT5, Jaguar XK6 and Titan system, respec-
tively). Similarly, we computed the correlation coefficient between
neighborhood recurrence effect (at the cage level) and temporal
recurrence parameter for each quarter. The correlation coefficients
are −0.72,−0.45, 0.92,and−0.30 for Jaguar XT4, Jaguar XT5, Jaguar
XK6 and Titan system, respectively. This indicates that neighbor-
hood recurrence effect can be both positively and negatively corre-
lated with temporal recurrence, depending upon the system. Pres-
ence of both types of correlation suggests that neighborhood recur-
rence effect is not subsumed by the temporal recurrence parameter

Jaguar XK6

SC17, November 12–17, 2017, Denver, CO, USA Saurabh Gupta, Tirthak Patel, Christian Engelmann, Devesh Tiwari

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X1
0

X1
1

X1
2

X1
3

X1
4

X1
5

X1
6

X1
7

X1
8

X1
9

X2
0

X2
1

X2
2

X2
3

X2
4

0.000

0.004

0.008

0.012

value

% Failures Distribution by Rows and Columns of Cabinets

(a) Jaguar XT5

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X1
0

X1
1

X1
2

X1
3

X1
4

X1
5

X1
6

X1
7

X1
8

X1
9

X2
0

X2
1

X2
2

X2
3

X2
4

0.0000

0.0025

0.0050

0.0075

0.0100
value

% Failures Distribution by Rows and Columns of Cabinets

(b) Jaguar XK6

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X1
0

X1
1

X1
2

X1
3

X1
4

X1
5

X1
6

X1
7

X1
8

X1
9

X2
0

X2
1

X2
2

X2
3

X2
4

0.005

0.010

0.015

value

% Failures Distribution by Rows and Columns of Cabinets

(c) Titan XK7

Figure 13: Non-uniform spatial distribution of system failures at the cabinet-level for different systems. Jaguar XT4 and Eos
not plotted due to space restriction but show similar behavior.

0.0%

1.0%

2.0%

0 100 200 300 400 500 600

Fr
ac

tio
n

of

Fa
ilu

re
s Titan

0.0%
1.0%
2.0%
3.0%

0 100 200 300 400 500 600

Fr
ac

tio
n

of

Fa
ilu

re
s Jaguar XK6

0.0%

0.5%

1.0%

0 100 200 300 400 500 600

Fr
ac

tio
n

of

Fa
ilu

re
s

Cages

Jaguar XT5

Figure 14: Non-uniform spatial distribution of system fail-
ures at the cage-level for different systems.

NRP (T ,Θ) =

M∑

i=1

P (θn = Ai ∩ tn − t0 < T ,∃Fn | θ0 = Ai)

× P (θ0 = Ai) (3)

NRP (T ,Θ) =

M∑

i=1

P (θn = Ai ∩ tn −t0 < T ,∃Fn ∩ θ0 = Ai) (4)

As shown in above equations, the neighborhood recurrence effect
is a function of future time window (T) and granularity of locale
(Θ). In our analysis, we define the granularity of locale Θ with
cabinet, cage, blade/module, and node. We calculate NRP at these
granularities over different time windows.

Fig. 15(a)-(d) compare the systems with respect to their neigh-
borhood recurrence effect at each granularity. First, we observe
that neighborhood recurrence effect is present in all systems at all
computing granularities (node, blade, cage, cabinet). Jaguar XT4,
Jaguar XK6 and Titan show similar neighborhood recurrence trends
over time, while Eos and Jaguar XT5 show significantly different
behavior.

Second, the relative neighborhood recurrence effect between
these systems also changes as the time window is changed. For
example, Eos has higher neighborhood recurrence effect for smaller

time windows while Jaguar XT4 has higher neighborhood recur-
rence effect if the time window is larger than 64 hours.

We note that neighborhood recurrence effect is observed even
for relatively smaller scale system (i.e., Eos) at each granularity (in
Fig. 15(a)-(d)), indicating that MTBF (or scale-normalized MTBF)
alone is not enough to capture the spatial characteristics of system
failure events. There are two different phenomenon that are respon-
sible for this behavior. First, the degree of temporal recurrence is
significantly high, i.e., the temporal recurrence parameter is smaller
than other three systems. This implies that the likelihood of subse-
quent failures after a failure event is higher, and therefore, we see
significant portion of failures show up in a smaller time window
after a failure, although the MTBF is quite large. Second, other than
the temporal recurrence in failures, there is significant neighbor-
hood recurrence in failures where subsequent failures occur in the
vicinity of previous failure events.

We point out that temporal recurrence is a system level observa-
tion and it is not capturing the location dimension. On the other
hand, neighborhood recurrence deals with the spatio-temporal be-
havior. Also, when comparing Jaguar XT5 with other systems, it
shows similar degree of temporal recurrence property as others,
but has much lower neighborhood recurrence effect. This further
strengthens our argument that spatio-temporal behavior is not a
manifestation of temporal recurrence alone, and instead it is a fun-
damental characteristic of system failures which should be used
to describe the reliability characteristics of a system. We clarify
that certain locations may experience higher failures temporarily
(e.g., more failures in higher cages which are relatively hotter than
lower cages), however, this alone doesn’t encapsulate the neigh-
borhood recurrence behavior. Even regions with relatively lower
failure concentration exhibit neighborhood recurrence behavior.

To further support our argument, we computed the correlation
coefficient between neighborhood recurrence effect (at the cage
level) and MTBF for each quarter (−0.68,−0.38,−0.79,and − 0.53
for Jaguar XT4, Jaguar XT5, Jaguar XK6 and Titan system, respec-
tively). Similarly, we computed the correlation coefficient between
neighborhood recurrence effect (at the cage level) and temporal
recurrence parameter for each quarter. The correlation coefficients
are −0.72,−0.45, 0.92,and−0.30 for Jaguar XT4, Jaguar XT5, Jaguar
XK6 and Titan system, respectively. This indicates that neighbor-
hood recurrence effect can be both positively and negatively corre-
lated with temporal recurrence, depending upon the system. Pres-
ence of both types of correlation suggests that neighborhood recur-
rence effect is not subsumed by the temporal recurrence parameter

SC17, November 12–17, 2017, Denver, CO, USA Saurabh Gupta, Tirthak Patel, Christian Engelmann, Devesh Tiwari

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X1
0

X1
1

X1
2

X1
3

X1
4

X1
5

X1
6

X1
7

X1
8

X1
9

X2
0

X2
1

X2
2

X2
3

X2
4

0.000

0.004

0.008

0.012

value

% Failures Distribution by Rows and Columns of Cabinets

(a) Jaguar XT5

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X1
0

X1
1

X1
2

X1
3

X1
4

X1
5

X1
6

X1
7

X1
8

X1
9

X2
0

X2
1

X2
2

X2
3

X2
4

0.0000

0.0025

0.0050

0.0075

0.0100
value

% Failures Distribution by Rows and Columns of Cabinets

(b) Jaguar XK6

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X1
0

X1
1

X1
2

X1
3

X1
4

X1
5

X1
6

X1
7

X1
8

X1
9

X2
0

X2
1

X2
2

X2
3

X2
4

0.005

0.010

0.015

value

% Failures Distribution by Rows and Columns of Cabinets

(c) Titan XK7

Figure 13: Non-uniform spatial distribution of system failures at the cabinet-level for different systems. Jaguar XT4 and Eos
not plotted due to space restriction but show similar behavior.

0.0%

1.0%

2.0%

0 100 200 300 400 500 600

Fr
ac

tio
n

of

Fa
ilu

re
s Titan

0.0%
1.0%
2.0%
3.0%

0 100 200 300 400 500 600

Fr
ac

tio
n

of

Fa
ilu

re
s Jaguar XK6

0.0%

0.5%

1.0%

0 100 200 300 400 500 600

Fr
ac

tio
n

of

Fa
ilu

re
s

Cages

Jaguar XT5

Figure 14: Non-uniform spatial distribution of system fail-
ures at the cage-level for different systems.

NRP (T ,Θ) =

M∑

i=1

P (θn = Ai ∩ tn − t0 < T ,∃Fn | θ0 = Ai)

× P (θ0 = Ai) (3)

NRP (T ,Θ) =

M∑

i=1

P (θn = Ai ∩ tn −t0 < T ,∃Fn ∩ θ0 = Ai) (4)

As shown in above equations, the neighborhood recurrence effect
is a function of future time window (T) and granularity of locale
(Θ). In our analysis, we define the granularity of locale Θ with
cabinet, cage, blade/module, and node. We calculate NRP at these
granularities over different time windows.

Fig. 15(a)-(d) compare the systems with respect to their neigh-
borhood recurrence effect at each granularity. First, we observe
that neighborhood recurrence effect is present in all systems at all
computing granularities (node, blade, cage, cabinet). Jaguar XT4,
Jaguar XK6 and Titan show similar neighborhood recurrence trends
over time, while Eos and Jaguar XT5 show significantly different
behavior.

Second, the relative neighborhood recurrence effect between
these systems also changes as the time window is changed. For
example, Eos has higher neighborhood recurrence effect for smaller

time windows while Jaguar XT4 has higher neighborhood recur-
rence effect if the time window is larger than 64 hours.

We note that neighborhood recurrence effect is observed even
for relatively smaller scale system (i.e., Eos) at each granularity (in
Fig. 15(a)-(d)), indicating that MTBF (or scale-normalized MTBF)
alone is not enough to capture the spatial characteristics of system
failure events. There are two different phenomenon that are respon-
sible for this behavior. First, the degree of temporal recurrence is
significantly high, i.e., the temporal recurrence parameter is smaller
than other three systems. This implies that the likelihood of subse-
quent failures after a failure event is higher, and therefore, we see
significant portion of failures show up in a smaller time window
after a failure, although the MTBF is quite large. Second, other than
the temporal recurrence in failures, there is significant neighbor-
hood recurrence in failures where subsequent failures occur in the
vicinity of previous failure events.

We point out that temporal recurrence is a system level observa-
tion and it is not capturing the location dimension. On the other
hand, neighborhood recurrence deals with the spatio-temporal be-
havior. Also, when comparing Jaguar XT5 with other systems, it
shows similar degree of temporal recurrence property as others,
but has much lower neighborhood recurrence effect. This further
strengthens our argument that spatio-temporal behavior is not a
manifestation of temporal recurrence alone, and instead it is a fun-
damental characteristic of system failures which should be used
to describe the reliability characteristics of a system. We clarify
that certain locations may experience higher failures temporarily
(e.g., more failures in higher cages which are relatively hotter than
lower cages), however, this alone doesn’t encapsulate the neigh-
borhood recurrence behavior. Even regions with relatively lower
failure concentration exhibit neighborhood recurrence behavior.

To further support our argument, we computed the correlation
coefficient between neighborhood recurrence effect (at the cage
level) and MTBF for each quarter (−0.68,−0.38,−0.79,and − 0.53
for Jaguar XT4, Jaguar XT5, Jaguar XK6 and Titan system, respec-
tively). Similarly, we computed the correlation coefficient between
neighborhood recurrence effect (at the cage level) and temporal
recurrence parameter for each quarter. The correlation coefficients
are −0.72,−0.45, 0.92,and−0.30 for Jaguar XT4, Jaguar XT5, Jaguar
XK6 and Titan system, respectively. This indicates that neighbor-
hood recurrence effect can be both positively and negatively corre-
lated with temporal recurrence, depending upon the system. Pres-
ence of both types of correlation suggests that neighborhood recur-
rence effect is not subsumed by the temporal recurrence parameter

Cage level distribution Cage level distribution

Cabinet level distribution Cabinet level distribution

Neighborhood Recurrence Property of
System Failures

Failures in Large Scale Systems:
Long-term Measurement, Analysis, and Implications SC17, November 12–17, 2017, Denver, CO, USA

0
5

10
15
20
25
30
35

0 16 32 48 64 80 96

C
ab

in
et

 N
ei

gh
bo

rh
oo

d
Re

-o
cc

ur
re

nc
e

Ef
fe

ct
 (%

)

Time Window (hours)

Jaguar Jaguar XT5
Jaguar XK6 Eos
Titan

(a) Cabinet

0

5

10

15

20

25

30

16 32 48 64 80 96

C
ag

e
N

ei
gh

bo
rh

oo
d

Re
-o

cc
ur

re
nc

e
Ef

fe
ct

 (%
)

Time Window (hours)

Jaguar Jaguar XT5
Jaguar XK6 Eos
Titan

(b) Cage

0

5

10

15

20

25

16 32 48 64 80 96

Bl
ad

e
N

ei
gh

bo
rh

oo
d

Re
-o

cc
ur

re
nc

e
Ef

fe
ct

 (%
)

Time Window (hours)

Jaguar Jaguar XT5
Jaguar XK6 Eos
Titan

(c) Blade/Module

0

2

4

6

8

10

0 16 32 48 64 80 96

N
od

e
N

ei
gh

bo
rh

oo
d

Re
-o

cc
ur

re
nc

e
Ef

fe
ct

 (%
)

Time Window (hours)

Jaguar XT4 Jaguar XT5
Jaguar XK6 Eos
Titan

(d) Node

Figure 15: Neighborhood recurrence property at different granularity across systems for time window of up to 96 hours.

or MTBF metric; it is a separate property of a system that should
be used if one desires to fully characterize the reliability of a system.

Summary We found that the spatial distribution of failures
is not uniform at any compute granularity across systems. We
discussed significant implications of this observation for users
and job schedulers.
We showed how to capture neighborhood recurrence effect
mathematically and demonstrated that neighborhood recur-
rence effect is not strongly correlated with MTBF or degree of
temporal recurrence. Neighborhood recurrence effect should
be used as a separate reliability characteristic of a system. It
can not be subsumed by temporal characteristics such as MTBF
or temporal recurrence. Interestingly, researchers at LLNL and
Argonne National Laboratory have independently verified that
our observations about spatial distribution of failures hold true
in their systems as well [6, 30], which are not Cray systems and
have very different system composition.

4 RELATEDWORK AND CONCLUSION
Quantifying and characterizing the system failures is the first step
for improving the reliability of HPC computing system. In order
to characterize the failure event, works such as [35] find a fitting
probability density function for the inter-arrival time of failures.
Exponential, Weibull, Lognormal, and Gamma are some common
distributions used to represent empirical data and the best fitting
distribution is used to infer the system’s behavior. For example, if
the best fitting distribution is Exponential, then the system exhibits
memoryless property, i.e. the failures are independent to each other;
whereas, other distributions do not have this property.

Often the data is summarized by a single number (or a few num-
bers) instead of detailed mathematical functions. This leads to the
average of these distributions, i.e., the mean of inter-arrival times
or mean time between failures (MTBF) to be the one of the most
common metric used in comparing systems. Some other metrics
include reliability growth models to understand if the inter-arrival
times are monotonically increasing [32]. Laplace test is applied
to calculate Laplace factor that can be used to assess the failure
intensity [32]. Gainaru et al. use autocorrelation metric to quantify
the periodicity in system failure events [18]. Different peaks in
autocorrelation represent some periodicity in the signal while a
random signal will have a high correlation with itself (zero lag) and
the correlation dies down with increasing lag [18].

On the other hand, in order to predict the failure events the
analysis of the system failure events based on the event types and
correlation among different event types is explored by previous
works [8, 19]. The analysis and reliability metrics derived from
the data are system specific and deal with understanding fault
modes and their characteristics. The development of such analy-
sis methodologies, tools and predictive models can lead to deeper
insights about the underlying system behavior but it remains too
complex to allow system administrators and users to compare reli-
ability of two different systems. This work has introduced two new
metrics to characterize temporal and spatial properties of failures
that can be used by other failure analysis efforts [2, 6, 30].

Several studies, such as [8, 11, 17, 24, 25, 29, 31, 33, 34], focus on
system failures characteristics to improve the reliability of HPC sys-
tems. For example, Liang et al. provided a thorough understanding
of different component failures including disk, network, memory
and processor for the Blue Gene/L system back in 2006 [24]. Oliner
et al. investigated system RAS logs for multiple HPC systems includ-
ing RedStorm and Thunderbird systems at the LANL and Sandia
Lab back in 2007 [29].

Schroeder et al. have studied the system failures and its impact on
multiple HPC systems at LANL [34]. System studied by Schroeder
et al. spanned between 1996 and 2005, and the system with largest
node count had 1024 nodes – in the same order as contemporary
fastest supercomputers. However, there has been a lack of such
large-scale reliability studies spanning across multiple systems,
generations, and system types. Recent studies fromUIUC and NCSA
collaboration have attempted to address this gap, however they
have only been limited on particular type of systems [7, 11, 12].

Some studies have also focused on studying the reliability of par-
ticular components such as DRAM, disks, and SSDs. For example,
DRAM-focused efforts have shown manufacture specific insights
and impact on DRAM reliability [20, 37, 40]. In contrast, this study
covers multiple types of system failures and errors, and also in-
vestigates the impact of failure types, inter-arrival patterns and
spatial correlation in system failures. We compare and contrast the
reliability characteristics of multiple large-scale HPC production
systems, and show how some of the characteristics can be used for
future HPC system provisioning and overall system efficiency.

We note that due to the sensitive nature of the data, it can not
be made publicly available as such. But, it is our continued effort
and final goal to make parts of the data available for researchers
in near future. Our study will enable others to learn from these
lessons, apply new metrics, and test the findings presented here

Evidences Supporting Neighborhood
Recurrence Property by Other Researchers

for Other Systems!
Di et al., Exploring Properties and

Correlations of Fatal Events in a Large-
Scale HPC System, TPDS 2019

understand the influential range of these events as well as
their spatial correlation.

We present the spatial distribution of fatal RAS events on
compute racks in Fig. 15, where different colors represent
different numbers of fatal messages (the darker the color is,
the more messages). We observe that there are no prominent
correlation across racks in a long-term observation, but the
correlation across nodes inside a rack is rather high. Accord-
ing to Fig. 15, the spatial distribution is fairly uneven. In
absolute terms, the number of fatal events striking individual
nodes is in the range [1,501], and up to 5,912 fatal messages
occur in a rack throughout the year 2015. About 7 racks
report muchmore fatal events than do the others. Some indi-
vidual node boards, such as the one in R2B-M0, suffer from
significantly more fatal events than do others, because of
hardware issues. For a few particular fatal message IDs with
a short-term logging period, we may observe a relatively
high correlation across racks/midplanes over the 5D torus
network, based on our optimized K-means clustering algo-
rithm. As shown in Fig. 16, the messages with message ID =
000400ED (indicating “unresponsive boards”) could be

correlated across midplanes (each square in the figure refers
to a midplane) over the 5D torus network. As confirmed by
the system administrator, the bottom racks experienced a
common system issue onApril 20th, 2015.

We further analyze the monthly spatial distribution of
the fatal RAS events. We present only distribution of events
in June 2015 (as shown in Fig. 15b), because of the space lim-
itation of this paper. The conclusion is also applied to other
months in our characterization. Similar to the year-based
analysis of spatial distribution (Fig. 15a), the month-based
distribution of fatal errors is not even either, and some fatal
events appear intensely to all of the nodes inside a particu-
lar rack, such as R09 in June.

Takeaway 6. For a relatively long-term yearly period, we do
not observe a clear locality feature or correlation across the error-
prone racks. However, we do observe relatively strong locality cor-
relations within a rack. That is, for the error-prone racks, all their
nodes likely encounter fatal events instead of only one or two
nodes. For a few particular message IDs with a short-term period,

Fig. 13. Distribution fitting of fatal event intervals for category.

Fig. 14. Distribution fitting of fatal event intervals for LocationMode.

Fig. 15. Spatial distribution of fatal RAS messages on compute racks.

Fig. 16. Classification of the messages with msg ID=000400ED on the
5D torus network based on optimized K-means Clustering algorithm.

372 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 2, FEBRUARY 2019

Patwari et al., Exploring Properties and
Correlations of Fatal Events in a Large-

Scale HPC System, FTXS 2017
FTXS’17, June 26, 2017, Washington , DC, USA Ayush Patwari, Ignacio Laguna, Martin Schulz, and Saurabh Bagchi

Black color is empty
space in the cluster

A colored square
represents a node

A rack of
nodes

The cluster is
composed of two
rows of racks

Racks row 1

Racks row 2

Aisle that
separates the
rows of racks

Figure 1: Snapshot of memory errors recorded between 5/20/2013 and 6/19/2013 on the Cab cluster displayed on the physical
layout of the system. Nodes without errors are shown in white, while nodes with at least one error in the current epoch are
colored. The black regions are either non-compute nodes or switches for the IB interconnect. The central horizontal gray block
represents a hot aisle separating the two rows of racks.

new error on a node or not. This model is able to achieve
a high F1-score (a metric that combines recall and preci-
sion) on a highly-unbalanced dataset (only 650 out of 251k
samples report a new error).

2 TERMINOLOGY
We �rst introduce some de�nitions and notations used in the paper.

Correctable Error (CE). Errors on a DRAMDIMM (Dual In-line
Memory Module) in a node, which are caused by transient, hard, or
intermittent faults, but which can be corrected transparently using
techniques like ECC.

Uncorrectable Error (UE). Errors on a DRAMDIMM in a node,
which cannot be corrected by the memory system and typically
lead to application aborts or node crashes.

Epoch. A parameter of our study that de�nes a period of time
in which errors are analyzed. For all our analysis in this paper, an
epoch is taken to be one month.

Erroneous Node. A node on which at least one correctable
error was observed during the epoch being considered. Note that if
a node had errors in a previous epoch, it will not be considered an
erroneous node in the current epoch if it does not have reported
new errors. Also note that we do not make a distinction between
two nodes, one with a single error and one with many errors in
an epoch—both would be considered erroneous nodes. The reason
for this is that DRAM errors have the characteristic that they are

latent, i.e., they are not detected until the a�ected cell in the DIMM
is accessed. Because of this, many accesses of an a�ected cell may
generate a large number of errors in a short period of time. Since we
do not havememory access data for the nodes we cannot distinguish
an erroneous node with few errors from one with many errors.

Number of errors. The total number of correctable errors ob-
served on a node for the given epoch.

Timestamp. Record of the time at which a sample was collected.
Time since last reset. Uncorrectable errors are normally fol-

lowed by a kernel panic and the node is rebooted. When this occurs,
the error counters for the node are reset and error data between
the beginning of the epoch and the hard reset is lost. This metric
measures the time elapsed since the last time a reset occurred.

3 EXPERIMENTAL SETUP
We describe the experimental setup for this work and introduce
the notations used in the following sections.

3.1 Data Gathering
As mentioned earlier, we use DRAM error data collected from the
Cab cluster at LLNL over a period of 14 months from May 2013
to July 2014. Cab has a total of 1296 nodes connected with an
In�niBand (IB) network and each node has two Intel 8-Core Xeon
E5-2670 processors. The physical layout can be seen in the Fig. 1.

Evidences Supporting Neighborhood
Recurrence Property by Other Researchers

for Other Systems!
Bautista-Gomez et al., Unprotected
Computing : A Large-Scale Study of

DRAM Raw Error Rate on a
Supercomputer, SC 2016

Wang et al., What	Can	We	Learn	from	
Four	Years	of	Data	Center	Hardware	

Failures?, DSN 2017

TABLE IV. CHI-SQUARE TEST RESULTS FOR HYPOTHESIS 5.

p-value Ratio
p < 0.01 10 out of 24

0.01 p < 0.05 4 out of 24
p � 0.05 10 out of 24

(a) Data center A

(b) Data center B

Fig. 8. The failure ratio at each rack position. (a) In data center A,
Hypothesis 5 cannot be rejected by a chi-square test at 0.05 significance.
(b) In data center B, Hypothesis 5 can be rejected at 0.01 significance.

As a more interesting observation, multiple servers can
repeat the failures synchronously, causing strong failure cor-
relations. We provide an example in Section V-C.

IV. SPATIAL DISTRIBUTION OF THE FAILURES

The common belief is that all physical locations in the
same data center are identical, without much impact on server
failures. We find out, however, the spatial location sometimes
does affect the failure rate of servers, especially the relative
position (i.e. slot number) on the rack.

We study 24 production data centers in our dataset and
count the average number of failures at each rack position.
We filter out repeating failures to minimize their impact on
the statistics. Moreover, as not every rack position has the
same number of servers (e.g. operators often leave the top of
position and bottom position of the racks empty), we normalize
the failure rates to the total number of servers at each rack
position. In this statistics, we count a server failure if any of
its components fail.

Hypothesis 5. The failure rate on each rack position is
independent of the rack position.

Interestingly, different data centers show different chi-
square test results. Table IV summarizes the results. In general,
at 0.05 significance level, we can not reject the hypothesis in
40% of the data centers while we can reject it in the other
60%.

Figure 8 shows the failure ratio in two example data
centers. In data center B, we can reject the hypothesis with
high confidence, while in data center A, we cannot.

Possible Reasons. One possible reason is the design of data
center cooling and the physical structure of the racks. While
the focus of the paper is not on the relation between the
temperature and failure, we have an interesting observation.
For both data center A and B, We can observe notable spikes
at certain rack positions. Even though Hypothesis 5 cannot be
rejected for data A, a further anomaly detection reveals that
the FRs at rack position 22 and 35 are singularly high in data
center A. Specifically, assume the failures occur on each rack
position independently and uniformly randomly, according to
central limit theorem, the FR on each rack position should
follow a normal distribution with small variance as the number
of failures gets large. We estimate the expectation µ and the
variation �

2 of the FR at each rack position and discover that
the FRs of rack positions 22 and 35 in data center A lie out
of the range (µ� 2�, µ+ 2�).

In fact, position 35 is close to the top of a rack. With the
under-floor cooling design, it is the last position cooling air
reaches. Position 22 is next to a rack-level power module in the
custom rack design. Our motherboard temperature readings at
these places are indeed several degrees higher than the average
motherboard temperature in each rack. This higher temperature
might result in higher failure rate at these two positions.

The data centers host multiple generations of servers par-
titioned to hundreds of product lines. Each data center has
distinct building architecture too. With these many uncertain
variables, we cannot provide a universal explanation of the
uneven spatial distributions of failures. However, from the
data centers we investigate, we find that in around 90% data
centers built after 2014, Hypothesis 5 cannot be rejected at
0.02 significance level. That is, the hardware failures are more
uniformly distributed on each rack position, probably because
the new data centers have a better cooling design, making the
inside environment more consistent across all rack positions.

V. CORRELATED FAILURES

Correlated failures are the least desirable, as hardware
diagnostics and software fault tolerance usually assume in-
dependent failures. In this section, we take a closer look at
correlated failures. We see two types of correlations.

• Batch failures, i.e. a large group of servers reporting
the same failure at the same time;

• Correlated component failures, i.e. multiple compo-
nents on a single server failing at the same time.

A. Batch failures

Different from the common belief that servers fail inde-
pendently, we see cases where many servers fail in a batch,
especially those servers with the same model, in the same

7

allocation is decreased by 10MB and repeated until a suc-
cessful allocation or until the amount for allocation becomes
0MB. If memory is allocated successfully, a START log entry
is created. The START log entry contains a time stamp, the
amount of allocated memory, host name and the temperature
of the node. If memory allocation fails, that information is also
logged in a separate file and contains a time stamp and the
host name. After successful memory allocation, the memory
scanner begins the execution of an infinite loop. Inside the
loop every memory word is written with a specific value (i.e.,
0x00000000). At every iteration, the values are checked and
updated with the opposite value (i.e., 0xFFFFFFFF if the
previous one was 0x00000000 and vice versa). If the expected
and actual values do not match, an ERROR log is created.
The ERROR log contains the time stamp, host name, virtual
address, actual value, expected value, temperature and physical
page address. We also tested another way to affect values:
we start with 0x00000001 and then keep increasing by 1 at
every iteration. Most of the study was done using the former
method in an attempt to stress equally all the bit positions of
the memory. While we acknowledge that these write patterns
might not be representative of real world applications, it is
hard to capture the memory write patterns of a wide variety of
HPC applications. Both value affecting strategies log exactly
the same data when an error occurs. The memory scanner
exits the infinite loop when it receives a SIGTERM signal.
Then it logs an END command. The END command contains
a time stamp, host name and the temperature of the node.
In some rare cases, the node was manually rebooted and no
END command was logged. This will produce a START event
followed by another START event, making it impossible for
us to know how many hours the memory monitor was running
(i.e., when the hard reboot occurred). In such scenario, we took
a conservative approach and we assumed 0 hours of memory
monitoring, which leads to a slight underestimation of the total
number of hours the system was monitored.

C. Error Extraction Methodology

In addition to the prototype system and the detection tool,
it is critical to explain the error accounting methodology. As
explained above, the scanning tool logs every error observed
in the system. However, not every error log is an independent
error. In many cases, a fault in a memory cell manifests
as many consecutive error logs over time, but they are all
related to the same original root cause: a fault in one memory
cell. Even if such a fault produced many incorrect values for
thousands of consecutive iterations, we count this as one
single memory error 2.

Another special case that requires particular attention is
when in one single iteration we observe multiple single-
bit errors in different memory addresses. Such errors would
manifest as multiple ECC corrections in a classical system
with ECC but given that they occur at the same time, it would
not be correct to consider them as multiple independent errors.

2Given that we filter multiple error logs originating on the same root cause
and count them as one single fault, we use the terms memory fault and
memory error interchangeably in the reminder of this paper

In fact, they are highly likely to originate from the same root
cause, as we will show later. Thus, we also analyze such
simultaneously occurring events (See Section III-B).

III. FAILURE ANALYSIS

The study lasted for over a year, accumulating over 4.2
million node-hours of error monitoring and logging over 25
million error logs from over 900 nodes with ECC-less low-
power DRAM. The length and scale of this study were care-
fully decided in order to guarantee the statistical significance
of this DRAM memory error characterization.

A. Memory scanned

The study covered a total of 12, 135 Terabyte-hours of
memory analysis. Figure 1 shows the total number of hours
that each node was scanned during the entire period of the
study. In the figure, we map the system in 63 blades with 15
SoC per blade, each SoC being an independent node. We see
that the first blades do not perform any error monitoring in the
first SoC; this is because they are dedicated as login nodes.

Fig. 1. Hours each node was scanned for memory errors

We also notice that the SoC 12 of most blades did not get
much monitoring time. This is due to the fact that those SoC
showed significant temperature issues because of their location
in the rack. Given that they tend to overheat, and to produce
heat for other nodes, the system administrators decided to turn
them off for long periods of time. Blade 33 was also shutdown
during the year due to hardware issues. We also notice that the
number of monitoring hours is not necessarily the same for
all the SoCs of a given blade. There are a few SoC that never
got scanned as they were shutdown due to hardware issues.
Most nodes got about 5000 hours of error monitoring, which
is more than half of the total period of the study (i.e., about
7 months out of 13). This large number of monitoring hours
gives us a fair degree of statistical confidence on the results.

Fig. 2. Amount of memory analyzed per node (Terabyte-Hours)

Job

Job

Job

Job

Job Job

Job

Job

Exploiting Spatial Locality for
Improving the Effective Reliability

On job restart or a new job allocation
a fraction of compute capacity is not utilized or is allocated

to lower-priority / smaller jobs

Job

Quarantine: Design Challenges

Job

Job

Job

Job

Job

Job Q
ua

ra
nt

in
eQuara

ntine Quarantine Granularity
Fraction of avoided system failures
versus compute resource waste

Job

Job

Job

Job Job

Job

Job Quarantine Time Duration
Diminishing returns on the number
of avoided failures

Job 2

Job 3

Job 1

Job 1

Job 1

Job 1

Job 1Job 1

Job 1

Job 1

Job 3

System Utilization vs. Reliability
Trading-off lower system utilization for
improved reliability

Quarantine Technique: In Action

Quarantine hours

System Utilization
Quarantine node hours

0.0%$
2.0%$
4.0%$
6.0%$
8.0%$

10.0%$
12.0%$
14.0%$

1$ 2$ 3$ 4$ 5$ 6$ 7$ 8$ 9$ 10$

%
$o
f$F
ai
lu
re
s$A

vo
id
ed

!

(a)

0.0%$

0.5%$

1.0%$

1.5%$

2.0%$

1$ 2$ 3$ 4$ 5$ 6$ 7$ 8$ 9$ 10$

%
$o
f$N

od
e$
Ho

ur
s$i
n$

Qu
ar
an
tu
ne

$M
od

e! Numberoffailures$
Time$window$

(b)

Fig. 9: Impact of near future window size parameter on fraction of failures avoided (a), fraction of quarantine node hours (b).

0.0%$

5.0%$

10.0%$

15.0%$

20.0%$

25.0%$

0$ 50$ 100$ 150$ 200$

%
$o
f$F
ai
lu
re
s$A

vo
id
ed

$

(a)

0.0%$

5.0%$

10.0%$

15.0%$

20.0%$

25.0%$

0$ 50$ 100$ 150$ 200$

%
$o
f$N

od
e$
Ho

ur
s$i
n$

Qu
ar
an
tu
ne

$M
od

e$ Cabinet$
Cage$
Blade$
Node$

(b)

Fig. 10: Evaluation of Quarantine Technique with varying duration of quarantine from 1 hour to 180 hours: Fraction of failures
avoided (a), and fraction of quarantine node-hours (b).

time in quarantine mode (i.e., the loss). The simulation results
indicate that with only 0.02% loss of node-hours in quaran-
tine, 3.85% of the failures can be avoided when Quarantine
Technique is applied at node granularity. If we increase the
granularity of quarantine to blade or cage, 5.07% or 7.21%
failures can be avoided respectively. These results indicate
that with increasing granularity of quarantine, the number of
failures avoided also increases, and this again shows that the
spatial locality is not just a node-level phenomenon. Overall,
the percentage of failures avoided for each granularity closely
follows the spatial locality results in Section III-D.

Observation 5. After a failure, putting a group of spatially-
nearby nodes in quarantine can effectively exploit the spatial
locality in failures. It can prevent a significant fraction of
system failures from affecting production jobs by trading
off relatively small fraction of computational resources. The
respective benefits and overheads depend on the granularity
of quarantine.

Interesting observations can be made from Fig. 8 (b), which
shows fraction of node-hours used by debugging jobs on Titan
per day. We observe that 1.4% of the node hours are already
spent in debug jobs on average over this period. On a per day
basis, 65% of the days saw more than 0.7% node-hours of the
system used for debug jobs. In this manner, the overhead of
using the quarantine method is minimized significantly if we
schedule debug jobs on the nodes under quarantine. Moreover,
the load of debug queue can be used to decide the granularity

and duration of quarantine which can be easily tuned. Design
of such a dynamic scheme is out of the scope of this study. In
the following section, we investigate the impact of granularity
and duration of quarantine on the fraction of node hours in
quarantine and failures avoided.

Observation 6. A large fraction of quarantine node hours can
be allocated towards debug or non-production jobs. Therefore,
the compute-hours wasted due to Quarantine Technique can be
minimized significantly or even completely obviated in some
cases, depending upon the system usage.

C. Understanding the Effect of Parameters and Trade-offs

One key consideration while putting a group of nodes
in quarantine is to decide the duration of quarantine in the
“number of hours” or “number of future failures”. It may seem
that they would both work equally well for specifying duration
of quarantine because they put the nodes in quarantine for a
similar amount of time on average (given time in hours =
number of failures ⇥ MTBF). In Fig. 9 (a) and (b), we show
that though the number of node-hours spent in quarantine stays
same for either choice of quarantine duration, the percentage of
failures avoided is significantly different. Using a time window
works significantly better than using number of failures. This
is due to temporal locality in failures, where the number of
failures that occur within a time window of ‘number of failures
⇥ MTBF’ is actually more than the number of failures [5].

8

Quarantine hours

System Reliability
Fraction of failures avoided

0.0%$
2.0%$
4.0%$
6.0%$
8.0%$

10.0%$
12.0%$
14.0%$

1$ 2$ 3$ 4$ 5$ 6$ 7$ 8$ 9$ 10$

%
$o
f$F
ai
lu
re
s$A

vo
id
ed

!

(a)

0.0%$

0.5%$

1.0%$

1.5%$

2.0%$

1$ 2$ 3$ 4$ 5$ 6$ 7$ 8$ 9$ 10$

%
$o
f$N

od
e$
Ho

ur
s$i
n$

Qu
ar
an
tu
ne

$M
od

e! Numberoffailures$
Time$window$

(b)

Fig. 9: Impact of near future window size parameter on fraction of failures avoided (a), fraction of quarantine node hours (b).

0.0%$

5.0%$

10.0%$

15.0%$

20.0%$

25.0%$

0$ 50$ 100$ 150$ 200$

%
$o
f$F
ai
lu
re
s$A

vo
id
ed

$

(a)

0.0%$

5.0%$

10.0%$

15.0%$

20.0%$

25.0%$

0$ 50$ 100$ 150$ 200$
%
$o
f$N

od
e$
Ho

ur
s$i
n$

Qu
ar
an
tu
ne

$M
od

e$ Cabinet$
Cage$
Blade$
Node$

(b)

Fig. 10: Evaluation of Quarantine Technique with varying duration of quarantine from 1 hour to 180 hours: Fraction of failures
avoided (a), and fraction of quarantine node-hours (b).

time in quarantine mode (i.e., the loss). The simulation results
indicate that with only 0.02% loss of node-hours in quaran-
tine, 3.85% of the failures can be avoided when Quarantine
Technique is applied at node granularity. If we increase the
granularity of quarantine to blade or cage, 5.07% or 7.21%
failures can be avoided respectively. These results indicate
that with increasing granularity of quarantine, the number of
failures avoided also increases, and this again shows that the
spatial locality is not just a node-level phenomenon. Overall,
the percentage of failures avoided for each granularity closely
follows the spatial locality results in Section III-D.

Observation 5. After a failure, putting a group of spatially-
nearby nodes in quarantine can effectively exploit the spatial
locality in failures. It can prevent a significant fraction of
system failures from affecting production jobs by trading
off relatively small fraction of computational resources. The
respective benefits and overheads depend on the granularity
of quarantine.

Interesting observations can be made from Fig. 8 (b), which
shows fraction of node-hours used by debugging jobs on Titan
per day. We observe that 1.4% of the node hours are already
spent in debug jobs on average over this period. On a per day
basis, 65% of the days saw more than 0.7% node-hours of the
system used for debug jobs. In this manner, the overhead of
using the quarantine method is minimized significantly if we
schedule debug jobs on the nodes under quarantine. Moreover,
the load of debug queue can be used to decide the granularity

and duration of quarantine which can be easily tuned. Design
of such a dynamic scheme is out of the scope of this study. In
the following section, we investigate the impact of granularity
and duration of quarantine on the fraction of node hours in
quarantine and failures avoided.

Observation 6. A large fraction of quarantine node hours can
be allocated towards debug or non-production jobs. Therefore,
the compute-hours wasted due to Quarantine Technique can be
minimized significantly or even completely obviated in some
cases, depending upon the system usage.

C. Understanding the Effect of Parameters and Trade-offs

One key consideration while putting a group of nodes
in quarantine is to decide the duration of quarantine in the
“number of hours” or “number of future failures”. It may seem
that they would both work equally well for specifying duration
of quarantine because they put the nodes in quarantine for a
similar amount of time on average (given time in hours =
number of failures ⇥ MTBF). In Fig. 9 (a) and (b), we show
that though the number of node-hours spent in quarantine stays
same for either choice of quarantine duration, the percentage of
failures avoided is significantly different. Using a time window
works significantly better than using number of failures. This
is due to temporal locality in failures, where the number of
failures that occur within a time window of ‘number of failures
⇥ MTBF’ is actually more than the number of failures [5].

8

Feedback to the job scheduler

3.85%
5.07%

7.21%

9.64%

0.02% 0.09% 0.69%
2.04%

0.0%
2.0%
4.0%
6.0%
8.0%

10.0%
12.0%

Node Blade Cage Cabinet
Quarantine time duration 48 hours

% Failures Avoided % Quarantine Hours

0.0%
1.0%
2.0%
3.0%
4.0%
5.0%
6.0%
7.0%
8.0%

Percentage of Node-hours used
by debug jobs

Mean
1.4%
0.69%

A significant fraction of failures can be avoided from
interrupting production or critical applications and

scheduling debug jobs in the quarantine region

Time (daily)

Interesting Use Cases
Zimmer et al., GPU age-aware

scheduling to improve the reliability of
leadership jobs on Titan, SC 2018

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 5.5e+06

 6e+06

 6.5e+06

 7e+06

 7.5e+06

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

N
od

e
R

es
er

va
tio

n
Se

co
nd

s

NodeIndex

inputdata using 1:3

Fig. 6. Allocated hours to each node of Titan based on position in the ALPS
list. Nodes in the first 20% of the machine are traditionally allocated first due
to a top-down first-fit allocation strategy.

implementation of DES on Titan. With the use of DES, the
back end of the list was allocated more small job hours, while
the front end of the list was allocated more large job hours.

d) Overview: In this work, we exploit the aforemen-
tioned scheduling strategies of ALPS ordering and DES on
Titan, and bring them to bear in a novel way to improve
the reliability of leadership jobs. These techniques were orig-
inally developed to fundamentally improve job performance
by reducing fragmentation. However, we see the potential
to apply smart scheduling to improve the reliability of the
jobs and consequently improve the productivity of the system.
Specifically, our contributions are as follows.

• GPU Age-aware ALPS Reordering: In this technique, we
create a new node ordering of the scheduling list, one
based on the age and stability of the GPUs.

• GPU Focused Dual-Ended Scheduling: A new application
of DES seeking to match jobs needing less GPU stability
such as small or cpu-only jobs, to the set of resources
offering less stability, creating less contention for stable
GPUs.

• Multi-parameter Simulation Study: Using scheduling
simulation we are able to evaluate a wide range of param-
eters to the proposed techniques on an actual workload
extracted from Titan.

• Large-Scale Test-shots on Titan: Simulation results pro-
vide the confidence necessary for live test-shots on the
full Titan system. Results from the test-shots allow us
to quantify the potential negative impacts to network
performance from the proposed strategies.

• Deployment: Our scheduling improvements have been
deployed in production for the past year, and has resulted
in tangibly improving the reliability of leadership jobs.
Finally we continue to perform on-going analysis of our
techniques on the production Titan system to gauge their
efficacy.

2) GPU Age-aware ALPS Reordering: From the scheduling
work mentioned previously, it became clear, that the policies in
MOAB have resulted in a preference being given to the nodes

1 2 3 4 5 6 7 8 9 10 11 12

1 2 5 7 10 11 3 4 6 8 9 12

La
rg

e
Jo

bs

Sm
al

l/C
PU

 J
ob

s

Spatial Ordering

GPU-Aware Ordering

Fig. 7. Reordering to move new GPUs to the start of the list to service large,
GPU-enabled jobs

at the head of the list. From this, we propose a GPU Age-aware
reordering of the scheduling list in order to improve the relia-
bility of leadership jobs. A reorganization of the scheduling list
may be utilized to provide stable GPU preference to jobs that
are scheduled on the machine through traditional (non-backfill)
scheduling mechanisms. Further, when employed with a past
approach such as DES, it may be possible to additionally
schedule jobs not needing GPUs in a portion of the machine
with older GPUs.

The complexity built into ALPS, discussed in II-D2, is
intended to provide better network performance for jobs.
However, in practice, many of the impacts get lost. This is due
to operationally mixing multiple jobs into the supercomputer.
The result is fragmentation, an imperfect allocation that creates
several disjoint sets of nodes spread throughout the machine
for a job’s use. The result of fragmentation is decreased
network performance. There have been several studies on
fragmentation at different facilities [1] [8], each with solutions
meeting a particular facility’s operational needs.

GPU Age-aware ALPS Reordering is simple in implemen-
tation, yet very powerful. Titan continues to use ALPS to
generate the original scheduling list based on the network
enumeration of the system. A secondary reorder pass of the
list is conducted prior to handing off to MOAB, shifting all
known stable GPUs upward in order as shown in Figure 7. The
resulting list has the 9,500 new GPUs at the top of the list and
the 9,188 older GPUs below them. The ordering of the GPUs
in relation to their type is maintained. The list was created with
the understanding that it would impact network performance.
However, due to natural fragmentation that occurs on the
system, it is possible that the resulting allocations under a
traditional workload would have marginal impact.

3) GPU Focused Dual-Ended Scheduling: Dual-Ended
scheduling is a strategy used on Titan that reduces the impact
of fragmentation on large jobs by scheduling smaller jobs from
the opposite end of the ALPS list. In the original work, it
was observed that the top-down scheduling strategy of jobs
of different sizes and wall-clock times would lead to gaps in
the scheduling list. This was particularly true at the OLCF
with a mixture of very large jobs running upward of 24
hours. Instead, Dual-Ended scheduling combines the use of
top-down and bottom-up scheduling for the machine using a
demarcation point to select which strategy to use. The current

Hussian et al., Partial Redundancy in
HPC Systems with Non-Uniform Node

Reliabilities, SC 2018

Fig. 4. Expected Completion Time for different values of r with Weibull
node failures. For the distribution, shape parameter = 0.7 and MTBF = 5 years.
Checkpointing cost = 60 seconds and ↵ = � = 0.

have lowest completion times. The range of node counts for
which this happens is still quite small, however. The behavior
remains almost similar when ↵ or � are made > 0, except
that the crossover points are shifted. Increasing ↵ shifts the
crossover points to the right. For example, with ↵ = 0.2, the
crossover between no replication and r = 1.25 happens around
9000 nodes instead of 7000 nodes. Increasing �, on the other
hand, brings the crossover points to the left towards smaller
node counts. For example, � = 10�5 causes the crossover
between r = 1 and r = 1.25 to happen at 6500 nodes instead
of 7000 nodes. Moreover, just like in Figure 4, there is only a
very small range of node counts for which partial replication
provides the lowest completion time.

Our main takeaway point from this section is that when
the nodes in the system have identical failure distributions,
which has been the traditional assumption in fault tolerance
research for HPC, partial replication rarely provides any gains
in performance against full and no replication. Depending on
the number of nodes in the system, the choice should then
only be between running an application under full replication
or running it with no replication at all.

V. SYSTEM WITH TWO TYPES OF NODES

We now move one step further by considering a system
where nodes are of two kinds: i) Good, which have a low
probability of failure, and ii) Bad, which have a higher
probability of failure. We assume that all the Good nodes have
the same failure distribution and all the Bad nodes have the
same failure distribution. This can be a scenario in a system
where individual system nodes can be approximately divided
into two categories: those which are more prone to failures
and those which are less prone to failures.

Let N

G

be the number of Good nodes and N

B

be the
number of bad nodes, such that N

G

+N

B

= N . Thanks to the
main result of section II, we know that if partial replication is
to be employed, we should start replicating from the lower end.
Moreover, within the nodes to be replicated, pairing should be
done as indicated by Figure 1. Using this knowledge, we can
enumerate all possible cases for different partial replication

Fig. 5. Possible cases of partial replication for system with Good and Bad
nodes. Nodes within the replicated set are paired according to the arrangement
depicted in Figure 1. For this figure, the number of Good nodes is taken to be
higher than the number of Bad nodes. If the number of Good nodes is strictly
lower than the number of Bad nodes, cases 5 and 6 above will not happen.

degrees of a Good-Bad node system. This enumeration is
depicted in Fig. 5. Starting from the no replication case,
increasing replication degree would mean initially replicating
the Bad nodes among themselves. Case 3 is the boundary of
case 2, when all of the Bad nodes have been replicated. As the
replication degree is further increased, some of the Good nodes
enter the replicated set as well. Case 4 thus contains two kinds
of replica pairs: a Good node paired with a Bad node, and a
Bad node paired with a Bad node. Case 5 is again a boundary
of case 4 where all replica pairs consist of a Good and a Bad
node each. The full replication case contains additional node
pairs depending on the difference between the number of Good
and Bad nodes.

We will explore how the average completion times of these
different cases fare against each other in different settings.
Such an analysis can be useful for system administrators in
deciding the optimal replication scheme that will result in the
lowest job completion time on average, based on information
about system nodes and other parameters.

A. Exponential Distribution

Assuming all the nodes in the system have exponential
failure distribution, we can take the failure rate of Good nodes
as �

g

and the failure rate of the Bad nodes as �

b

, where
�

g

 �

b

. Since case 2 in Fig. 5 is quite similar to the
partially replicated iid system in section IV, we first attempt
to approximate its MTTI. For this case, we can write the
reliability of the system as

R(t) = e

�NG�gt
e

�(NB�2b)�bt(2e��bt � e

�2�bt)b (16)

where 2b is the number of Bad nodes that are replicated. To
obtain the MTTI of such a system, we can follow the same
approach as in section IV to approximate the integral of R(t).
This yields the following approximation for the MTTI, M , of
the system in case 2

M ⇡ 1

N

G

�

g

+ (N
B

� 2b� 1)�
b

(17)

This expression again reasonably approximates the MTTI as
long as 2b is not close to N

B

.

Fig. 1. Selection and pairing of replicas to maximize reliability.

fail, and Bad, that are more likely to fail. We show
how different parameters affect the optimal partial
replication factor. Our work provides a framework
which can be used by system administrators and
job schedulers to decide which nodes to replicate in
systems where individual nodes’ mean-time-between-
failures (MTBFs), while not necessarily accurately
modeled, are known to take either a high or a low
value to a first order approximation.

Even at node counts where the performance of simple check-
point/restart drops drastically, pure replication still seems like
an overkill. Our work attempts to demonstrate that, instead of
blindly replicating every node, a smarter choice can be made
by understanding the failure characteristics of the underlying
system and replicating accordingly.

The remainder of this paper is organized as follows: section
II provides results on the system configuration that maximizes
reliability, section III presents the mathematical details of the
model and the optimization problem, sections IV, V and VI
present the results of the optimization for different types of
systems, section VII surveys some of the related work and
section VIII concludes.

II. MAXIMIZING RELIABILITY

We start with the question of how, knowing the number of
nodes to replicate, should the replicated nodes be selected and
paired. Consider a system with N nodes with individual node
failure density functions given by h

i

(t), 1 i N , where
t > 0 is the time. These functions are typically taken to be
exponential or Weibull, and characterized by failure rate �

i

,
where �

i

is the inverse of node i’s MTBF. Individual node
MTBFs can be assigned by observing their failure history. For
example, works such as [5], [6] and [7] explore the spatial
distribution of failures by analyzing the number of failures
over time at the cabinet, cage, blade and node granularities for
multiple HPC systems at the Oak Ridge National Laboratory
(ORNL) and Los Alamos National Laboratory (LANL) over
several years. Such analyses can be used to estimate MTBF
down to the level of individual nodes or group of nodes.
A more sophisticated approach to compute the reliability of
individual nodes is presented in [9].

We assume without loss of generality that the nodes are
ordered by their failure rates, such that �

i

(t) �

i+1(t) for all
1 i N�1. Note that the iid failure distribution assumption
is a special case of this in which all �

i

’s have the same value.
In order to answer the question of optimal selection and pairing

of replicas, it is simpler to work with the nodes’ probability
of survival until time t (or reliability) given by g

i

(t) = 1 �R
t

0 h

i

(x)dx, 1 i N . With the nodes sorted by increasing
failure rates, we see that g

i

(t) � g

i+1(t) for all 1 i N�1.

Assume, for now, that a particular job requires n nodes to
execute in parallel, where n N . Moreover, assume that the
remaining N�n nodes are to be used as replicas of some of the
n nodes, in order to provide better protection from failures. We
will relax these assumptions in subsequent sections to make n

variable in order to explore if partial replication is beneficial
at all. For now, however, we try to answer the first question:
Which of the n nodes should have replicas, and how should
they be paired with the other N�n nodes to form node-replica
pairs? We restrict ourselves to maximum dual node replication
only, so N/2 n N . In such a configuration, let a =
n�(N�n) = 2n�N be the number of non replicated nodes,
and b = n� a = N � n be the number of node replica pairs,
such that a + 2b = N and a + b = n. The partial replication
factor, r, will thus be given by r = (a + 2b)/(a + b), and
1 r 2. Our original question can thus be reformulated as:
Given values of a and b and reliability g

i

(t), 1 i N , which
2b out of the N nodes should be replicated and how should the
replicated nodes be paired so that overall system reliability is
maximized? The answer is to pick the least reliable 2b nodes
for replication. Among those 2b nodes, the least reliable node
should be paired with the most reliable node, and so on. This is
shown in Fig 1, and formally stated in the following theorem:

Theorem. Given a, b and an N node system (a + 2b = N)
with node reliability given by g

i

(t) and g

i

(t) � g

i+1(t) for
1 i N � 1, let A ✓ {1, 2, . . . , N}, |A| = a, be
the set of non-replicated nodes and B = {(j, k) | j, k 2
{1, 2, . . . N} � A and j 6= k}, |B| = b, be the set of node-
replica pairs. Maximum overall system reliability is achieved
when A = {1, 2, . . . , a} and B = {(j, 2(a+ b) + 1� j) | j 2
{a+ 1, a+ 2, . . . a+ b}}.

To determine the overall reliability for a given partial
replication configuration, we observe that, for a node-replica
pair (j, k), application failure occurs when both nodes in
the pair fail. Hence, the reliability of pair (j, k) is given by
1� (1�g

j

(t))(1�g

k

(t)). For sets A and B as defined above,
the overall system reliability R(t) can thus be written as

R(t) =
Y

i2A

g

i

(t)
Y

(j,k)2B

(1� (1� g

j

(t))(1� g

k

(t))) (1)

For simplicity, we remove variable t and obtain

R =
Y

i2A

g

i

Y

(j,k)2B

(1� (1� g

j

)(1� g

k

)) (2)

We prove the above theorem in two lemmas. First we prove
that maximum reliability is achieved when the set of non-
replicated nodes consists of the most reliable nodes.

Lemma 1. R is maximized when A = {1, 2, . . . , a}.

Proof: Assume by contradiction that we have a config-
uration in which A 6= {1, 2, . . . , a}. This means there is a
node with higher reliability in the replicated set and a node
with lower reliability that is not replicated. In other words,
9g

i

where i 2 A and i > a and 9 a pair (j, k) 2 B such that

There are two worlds in this world!

High Performance Computing
Data Centers

Enterprise Computing
Data Centers

Large-scale Computational Science Applications

CLOUD COMPUTING
§ Resource Flexibility

• Users can elastically scale their resources on-demand

§ Cost Efficiency
• Sharing resources between multiple users and applications

Batch applicationsLatency-critical
Interactive apps

QoS: tail latency QoS: throughput

CLOUD COMPUTING
§ Resource Flexibility

• Users can elastically scale their resources on-demand

§ Cost Efficiency
• Sharing resources between multiple users and applications

Batch applicationsLatency-critical
Interactive apps

QoS: tail latency QoS: throughput

Latency-sensitive applications plus batch jobs

Vibration Effects of Storage Devices

“What does Vibration do to Your SSD?” Janki Bhimani, Tirthak
Patel, Ningfang Mi, Devesh Tiwari, In the Proceedings of the

56th Annual Design Automation Conference (DAC), 2019.

We know vibration hurts hard disks!

December 2008

We know vibration hurts hard disks!

December 2008

We know vibration hurts hard disks!
Yes, there are fixes.

But, they are expensive!

https://www.hpcwire.com/2010/01/19/startup_takes_aim_at_per
formance-killing_vibration_in_datacenter/

December 2008

Because….

SSDs are higher performant and do not have
moving mechanical parts.

Now, SSDs are operating in
increasingly vibration-prone

environments!

Data Centers

Battlefield

Space
Explorations

Self-Driving
Cars

Time to repeat
what Brendan

Gregg did to hard
disks in 2008, but
this time to SSDs?

Perhaps, a bit more
scientific and controlled!

Vibration intensity lower than
the vendor-specified limits!

As the conventional wisdom would
suggest, vibration does not seem to have

any visible effect on SSD performance!

Effect on mean I/O bandwidth Effect on mean I/O latency

But, when we dig deeper…

Vibration can affect the I/O
tail latency significantly!

Tail latency degraded by up to 10% across vendors and
I/O type (read and write).

Axis of Vibration

Axis of Vibration Matters a Lot!

Effect of⊥ vibration on tail latency is much worse
than = vibration, up to 30% in some cases!

I/O tail latency gets worse under
active vibration across vendors and
I/O types, and the magnitude may
depend on the axis of vibration!

I/O tail latency gets worse under
active vibration across vendors and
I/O types, and the magnitude may
depend on the axis of vibration!

Then, all I need to do is not operate under
active vibrations, just like hard disk days!

Unfortunately, no!

Vibration effects on SSDs tend to persist.

Nature and magnitude of post-effects
depends on the length of the vibration!

Short-term Vibrations Can Leave
Permanent Post-effects on Tail Latency!

Long-term vibrations
are even more harmful!

Long-term exposure to vibration can degrade
the tail latency by as much as 45%!

Surprisingly, long-term vibrations
can also lead to SSD failures !

Some SSDs operating under vibration observed silent and
transient failures soon after the end of the long-term window,
but before reaching their write-endurance limit. These SSDs

functioned correctly after a restart, until the next failure.

Failures prone to be classified as NDFs (No Defect Found)

These failures result in permanent
performance degradation!

Vendor A

Bandwidth MB/s

C
D

F
Vendor C

Bandwidth MB/s

C
D

F

Before Failure After Failure

SSD vibration effects tend to persist even if the
length of exposure to vibration is short!

Long-term vibrations can degrade both the tail
I/O latency and bandwidth.

Long-term vibrations can also lead to silent
failures and permanent bandwidth degradation.

Conclusion

Next time, you borrow or buy an SSD, inquire
if the device was exposed to vibration, in

what axis, and for how long?

Vibrations considered harmful even for SSDs!

Back Up Slides

With sincere thanks to students and collaborators at Oak Ridge National Lab,
Lawrence Berkeley National Lab, Argonne National Lab, Northeastern University,

College of William & Mary and Wayne State University

You can’t avoid them, you can’t predict them,
but you can choose who gets hit by them!

