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There are two worlds in this world!
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There are two worlds in this world!

Large-scale Computational Science Applications Latency-sensitive applications plus batch jobs
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Long running “tightly-coupled”
applications, explicit focus on resilience
mechanisms (e.g., checkpoint-restart),
improvements in system throughput and
utilization desired.

Short running jobs (in the order of
milliseconds to seconds), restart-on-
failure, focus on achieving tighter
SLAs and reducing tail latency
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Large-scale scientific applications will face
severe resilience challenge at exascale!
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Rethinking How We Manage
Failures

You can’t avoid them, you can’t predict them,
but you can choose who gets hit by them!

Key is to exploit statistical properties of failures and
diversity in characteristics of jobs



Who gets hit by failures: Part |

Who gets hit by failures In time!

Garg et al., “Shiraz: Exploiting System Reliability and Application
Resilience Characteristics to Improve Large Scale System
Throughput”, DSN 2018.



What new territory does this work explore?

Prior efforts increase effective system MTBF

Building more reliable system components
Failure prediction, Quarantine job scheduling

Prior efforts reduce checkpointing overhead

Incremental checkpointing of system state
Checkpoint compression, Lazy checkpointing

Shiraz improves both system throughput and individual

application performance by exploiting (a) differences in

application resilience characteristics, and (b) dynamic
system reliability behavior




Observation 1: Large variations
exist in checkpointing overheads
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Checkpointing overhead varies with application type, simulation
parameters, memory-resident data size, input size, etc.



Observation 1: Large variations
exist in checkpointing overheads

Machine Application Domain Checkpointing
Duration (sec.)
Titan (OLCF) Climate Change Simulation 1.5
with the Community Earth
System Model
Hopper (NERSC) | 20th Century Reanalysis 2
Franklin (NERSC)
Jaguar (ORNL) Molecular Simulation 6
Hopper (NERSC) | in Energy Biosciences
Carver and Computational Predictions 50
Euclid (NERSC) of Trans. Factor Binding Sites
Cori (NERSC) Chombo-crunch 70
Hopper (NERSC) | Climate Science for a 150
Sustainable Energy Future
Hopper (NERSC) | Laser Plasma Interactions 1800
Hopper (NERSC) | Plasma Based Accelerators 2000
Hopper (NERSC) | Plasma Science Studies 2700

Light Applications (LW): low checkpointing overhead
OClw =

lower optimal checkpointing interval:
Heavy Applications (HW): high checkpointing

overhead; higher optimal checkpointing interval: OClyy =

Normalized Ckpt Time
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Observation 2: System failure rate
IS hot constant over time
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The hazard rate monotonically decreases between two
failures, although that does not imply that the system
becomes more or less reliable over a long period of time



Observation 2: System failure rate
IS hot constant over time
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The hazard rate monotonically decreases between two
failures, although that does not imply that the system
becomes more or less reliable over a long period of time



Observation lll:
Conventional scheduling is inefficient

Switch between applications at every failure

| Failure | Failure | Failure
[ ] [ ] [ ]

[ Heo)ENETlS) Pe--

Light applications (LW) have lower average lost work per
failure compared to heavy applications (HW)

| Failure | Failure ! Failure | Failure
[} [ ] ]

W) [ Wos]...

() ww App Useful Work @) HW App Useful Work
- LW App Checkpoint . HW App Checkpoint
LW App Lost Work . HW App Lost Work




Shiraz: Key Idea
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Q
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o Time Between Two Failures
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Failure ! Switch Point Failure
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LW Useful Work @) HW Useful Work
B LW Checkpoint @ HW Checkpoint
S) LW Lost Work &) HW Lost Work

Schedule a light-weight application after a failure, and switch to a
heavy-weight application, at an optimal point between two failures



Optimal Switching Point

Optimal switching point is the number of checkpoints that LW
application takes before yielding to the HW application such that
the system throughput (i.e., total useful work per failure) is
maximized, without hurting any application’s performance

| Failure Switch Point A | Failure

_____________________________________________________________________________

Total Useful
o
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LW Useful

| Switch Point B

LW Useful Work . HW Useful Work
B LW Checkpoint . HW Checkpoint

HW Useful

Optilmal
LW Lost Work . HW Lost Work Switch Point

Switch Point ——




Shiraz Model

* Inputs MTBF (M), Checkpointing overheads (5,, and o)
o-factor = oy, / O, (ratio of checkpointing overheads)

« Output Optimal switching point (k) -- the number of checkpoints by
LW application before scheduling HW application

T — T = Th% S

useful-shiraz useful-base = “+ useful-shiraz useful-base

S.t. (Tuseful shiraz Tuseful base) Z 0

and (Tuseful shiraz Tuseful base) Z 0

More modeling details and tricks in the paper

ﬂotal
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HW . . -qnum HW ) _ . -1um
j—iost base — € X (OCIHW + 5Hw) X Fall?(;ltgi Tuseful—base = ; 1 X OCIHW X Falli,i+1(OCIHW + 5HW) Tuseful-shlraz - i 1 X OCIHW X Falll,z—i—l(OCIHW + 5HW)



Shiraz Model Validation

Shiraz’s per-application predictions validated against simulation

Extensive validation in the paper

No assumptions about order and type of scheduled applications
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Shiraz Optimal Switching Points

Checkpointing Model Optimal Simulation Optimal
Overhead Ratio = Switching Point Switch Point

System Type

Exascale
Exascale
Exascale
Exascale
Petascale
Petascale
Petascale
Petascale

Shiraz model accurately predicts the optimal switch point across
different scales and different checkpointing overhead ratios



Shiraz Evaluation

Workload Parallel
Job Manager Storage
Queue (e.g. SLURM) Compute Nodes System
Application App 1 App 2 8
Checkpoint
Time and PO || P1 P3| P4
System 8
MTBF P2 P5 || P6
L5 eoo
l Periodic Periodic :
: Shiraz Allocate Checkpoint Checkpoint L4
° And Nodes : | : '
] Shiraz+ "l !
L1 [
A e o L)
e e e e Lem e e e o -
Upon Application Checkpoint
Incoming Jobs Switch or Failure

Exploration of real-world system parameters through simulations
Peta/Exa- scale, varying checkpointing overheads, multiple applications

Real-world prototype on a cluster with system-level checkpointing



Optimal Switching Point: Insights
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Increases System MTBF decreases

Optimal switching point shifts to the Optimal switching point shifts to
right and benefits increase as the the left as the MTBF decreases
difference in the time-to-checkpoint but the benefits increase (i.e.,
between applications increases Shiraz is more useful at exascale)



Optimal Switching Point: Insights

Intuitively, one may think the optimal
switching point to be half of the MTBF (in
terms of time), but Shiraz discovers that it can
be larger than even the MTBF in many cases!



Shiraz is Effective in Multi-dob Mix

Machine Application Domain Checkpointing 80
Duration (sec.) 60L MTBF: 5 hours

Titan (OLCF) Climate Change Simulation 1.5

with the Community Earth

System Model m
Hopper (NERSC) 20th Century Reanalysis 2 §
Franklin (NERSC) <
Jaguar (ORNL) Molecular Simulation 6 Y,
Hopper (NERSC) in Energy Biosciences S
Carver and Computational Predictions 50 %
Euclid (NERSC) of Trans. Factor Binding Sites 2 241t MTBF: 20 hours
Cori (NERSC) Chombo-crunch 70 &
Hopper (NERSC) Climate Science for a 150 - 16t

Sustainable Energy Future
Hopper (NERSC) | Laser Plasma Interactions 1800 G m—_—mm=y 2 ey (R
Hopper (NERSC) Plasma Based Accelerators 2000
Hopper (NERSC) Plasma Science Studies 2700 0 1_| '2_| |3_| |4_| |5_| 6 7 ) 9 10

Application ID

Shiraz extended to a multi-job mix by intelligent application pairing
No application is hurt in the job mix for a representative workload mix
Throughput improvement increases at exascale (total 157 hours)



Shiraz: Energy Saving Analysis

Representative workload mix 40 jobs (only 5 heavy-weight
and rest 35 light-weight applications) run for a year

Shiraz results in savings* of $57K per annum for a 10 MW
Petascale system (MTBF: 20 hours); savings of $285K over
a lifetime of 5 years

Shiraz results in savings* of $178K per annum for a 20 MW
future Exascale system (MTBF: 5 hours); savings for $890K
over a lifetime of 5 years

* Electricity @ $0.1 per KW-hour



Shiraz improves system
throughput, but does not mitigate
the 1/0 overhead!



Shiraz+: Key Idea

Failure

Switch Point

Failure
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Shiraz

Shiraz+

@) HW Useful Work
@ HW Checkpoint
Q) LW Lost Work &) HW Lost Work

LW Useful Work

Use the throughput gains obtained by Shiraz to reduce the

checkpointing overhead of HW application
Intuition: HW application is already running in a high-reliability zone



Improvement over isolation (%)

Shiraz+ Reduces I/0 Overhead
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60% reduction in checkpointing overhead when checkpointing
frequency is reduced by 4x; throughput degrades only by 4.8%

No throughput degradation with 2x reduction in checkpointing
frequency and 40% reduction in checkpointing overhead



Shiraz+ is Effective in Multi-dob Mix

Shiraz+ can reduce the overall
checkpointing overhead by
52%, without degrading the
system throughput (with 3x
OCl)

With 4x OCI, the overall
checkpointing overhead
reduces by up to 60%, with a
throughput degradation of 1%

Improvement over baseline (%)
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Who gets hit by failures: Part |l

Who gets hit by failures in space!

“Failures in Large Scale Systems: Long-term Measurement, Analysis,
and Implications”, SC 2017.

“Understanding and Exploiting Spatial Properties of System Failures on
Extreme- Scale HPC Systems”, DSN 2015.



Uneven Spatial Failure Distribution
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Holds True for Other Systems too!

Jaguar XT5
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Neighborhood Recurrence Property of
System Failures

Cabinet Neighborhood
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Evidences Supporting Neighborhood
Recurrence Property by Other Researchers
for Other Systems!
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Di et al., Exploring Properties and Patwari et al., Exploring Properties and
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Evidences Supporting Neighborhood
Recurrence Property by Other Researchers

for Other Systems!
Bautista-Gomez et al., Unprotected Wang et al., What Can We Learn from
Computing : A Large-Scale Study of Four Years of Data Center Hardware
DRAM Raw Error Rate on a Failures?, DSN 2017

Supercomputer, SC 2016
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Exploiting Spatial Locality for
Improving the Effective Reliability

On job restart or a new job allocation
a fraction of compute capacity is not utilized or is allocated
to lower-priority / smaller jobs



Quarantine: Design Challenges

| Quarantine Granularity

Fraction of avoided system failures
versus compute resource waste

| Quarantine Time Duration

Diminishing returns on the number
of avoided failures

I8 System Utilization vs. Reliability

Trading-off lower system utilization for
Y improved reliability




Quarantine Technique: In Action

System Reliability \ System Utilization

Fraction of failures avoided Quarantine node hours
@J% \ GO% =0=Cabinet \
20.0% X 20.0% ==Cage
A-Blade
15.0% 15.0% =>&=Node

10.0% 10.0%
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0.0% 0.0%

100 150 200

k Quarantlne hours j

150 200

\ Quarantlne hours j

[Feedback to the job scheduler]




, _ _ Percentage of Node-hours used
B % Failures Avoided B 9% Quarantine Hours

by debug jobs
12.0% - 8.0%
10.0% 9.64% 7.0%
8.0% 6.0%
9 5.07% 5.0%
6:0% "3 85% 4.0%
4.0% % 3.0% ‘| |
2:0% Jooz% 0.09% 2.0% | {| Mean
0.0% il e 10% T, i e O e Sl 1.4%
) I I (o)
Node Blade Cage Cabinet  0.0% Al 0.69%
Quarantine time duration 48 hours Time (daily)

A significant fraction of failures can be avoided from

interrupting production or critical applications and
scheduling debug jobs In the quarantine region




Interesting Use Cases

Hussian et al., Partial Redundancy in Zimmer et al., GPU age-aware
HPC Systems with Non-Uniform Node scheduling to improve the reliability of
Reliabilities, SC 2018 leadership jobs on Titan, SC 2018
Spatial Ordering
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There are two worlds in this world!

Latency-sensitive applications plus batch jobs
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Vibration Effects of Storage Devices

“What does Vibration do to Your SSD?” Janki Bhimani, Tirthak
Patel, Ningfang Mi, Devesh Tiwari, In the Proceedings of the
56th Annual Design Automation Conference (DAC), 2019.



We know vibration hurts hard disks!
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We know vibration hurts hard disks!
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We know vibration hurts hard disks!

2 YouTube o Yes, there are fixes.

Startup Takes Aim at Performance-Killing Vibration

= in Datacenter
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But, they are expensive!

The price premium for a Green Platform rack compared to a traditional metal
rack is significant. According to Gordon, an AVP will cost four to five times that
of a steel rack (which runs around $2,000). But to Gordon, that’s not the way
to look at this solution. Since the AVP-1000 improves performance and lowers
energy costs, the rack can pay for itself in less than 12 months — sometimes
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Because....

SSDs are higher performant and do not have
moving mechanical parts.



Now, SSDs are operating In
Increasingly vibration-prone
environments!
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Time to repeat
what Brendan
Gregg did to hard
disks in 2008, but
this time to SSDs?
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Perhaps, a bit more
scientific and controlled!
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Vibration intensity lower than
the vendor-specified limits!



Degradation

in Mean
Bandwidth (9

3

As the conventional wisdom would
suggest, vibration does not seem to have
any visible effect on SSD performance!
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But, when we dig deeper...



Vibration can affect the I/0
tail latency significantly!
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Talil latency degraded by up to 10% across vendors and
I/0 type (read and write).



Axis of Vibration

Parallel Orientation to the Vibration (=)

Axis of Vibration

Perpendicular Orientation to the Vibration (L)




Axis of Vibration Matters a Lot!
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Effect of L vibration on tail latency is much worse
than = vibration, up to 30% in some cases!



I/0 tail latency gets worse under
active vibration across vendors and

/0 types, and the magnitude may
depend on the axis of vibration!




I/0 tail latency gets worse under
active vibration across vendors and

/0 types, and the magnitude may
depend on the axis of vibration!

Then, all | need to do is not operate under
active vibrations, just like hard disk days!



Unfortunately, no!
Vibration effects on SSDs tend to persist.

Nature and magnitude of post-effects
depends on the length of the vibration!



Short-term Vibrations Can Leave
Permanent Post-effects on Talil Latency!
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Long-term vibrations

= Vibration I
, _are even more harmful!
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Long-term exposure to vibration can degrade
the tail latency by as much as 45%!

Write Tail Latency
Performance



Surprisingly, long-term vibrations
can also lead to SSD failures !

Some SSDs operating under vibration observed silent and
transient failures soon after the end of the long-term window,
but before reaching their write-endurance limit. These SSDs
functioned correctly after a restart, until the next failure.

kernel: :0:0:0: [sda] Synchronizing SCSI cache
kernel: :0:0:0: [sda] Synchronize Cache(10) failed: Result:
hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK

kernel: :0:0:0: [sda] Stopping disk

kernel: :0:0:0: [sda] Start/Stop Unit failed: Result:
hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK

system-udevd[ ]: Process ‘/lib/udev/hdparm’ failed with exit code 5.

Failures prone to be classified as NDFs (No Defect Found)



These failures result in permanent
performance degradation!
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SSD vibration effects tend to persist even if the
length of exposure to vibration is short!

Long-term vibrations can degrade both the tail
1/0 latency and bandwidth.

Long-term vibrations can also lead to silent
failures and permanent bandwidth degradation.




Conclusion

Vibrations considered harmful even for SSDs!

Next time, you borrow or buy an SSD, inquire
if the device was exposed to vibration, in
what axis, and for how long?




Back Up Slides

You can’t avoid them, you can’t predict them,
but you can choose who gets hit by them!
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Lawrence Berkeley National Lab, Argonne National Lab, Northeastern University,
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